

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

Fire Barrier Foil Faced 1 Side

The results are for: 1 m2 of product,

with a thickness of

50 mm.

Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Product stage Construction installation stage				Use stage						End-of-life stage					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Х	Х	Х	Х	х	Х	MNA	MNA	MNA	MNA	MNA	MNA	Х	Х	Х	Х

Recovery
RecoveryRecoveringRecoveringA RecoveringRecoveringRecoveringA RecoveringRecov

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D			
Global warming	kg CO ₂ eqv	5.6E+00	1.0E+00	1.0E+00	0	1.8E-02	7.3E-02	-2.5E-01			
The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas, carbon dioxide, which is assigned a value of 1.											
	f ozone is caused	by the breakdov	1.6E-16 In shields the earth wh of certain chlo when they reach the molecules.	rine and/or bro	mine co	ntaining comp	ounds	-1.4E-14			
Acidification Acid depositions has sources for emissio		bstances are ag	•	il fuel combusti				-8.4E-04			
Eutrophication Excessive enrichme	kg PO ₄ ³⁻ eqv ent of waters and	4.9E-03 continental sur	1.6E-04 faces with nutrien	1.9E-04	O ociated a	4.0E-06	5.3E-05 ical effects.	-1.1E-04			
Photochemical ozone creation	kg Ethene eqv	1.2E-03	-3.4E-06	5.3E-05	5.4E-10	-1.8E-06	3.6E-05	-9.5E-05			
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.											
Depletion abiotic resources -elements	kg Sb eqv	1.3E-05	8.3E-08	2.1E-08	0	1.4E-09	2.8E-08	-5.6E-08			
Depletion abiotic resources fuels	MJ	6.7E+01	1.4E+01	1.8E+00	0	2.4E-01	1.0E+00	-6.2E+00			
Consumption of non-renewable resources, thereby lowering their availability for future generations.											

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	2.1E+01	7.6E+00	9.4E+00	0	1.4E-02	1.4E-01	-3.4E+00
Use of renewable primary energy resources used as raw materials	MJ	1.1E+01	0.0E+00	-8.7E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	3.2E+01	7.6E-01	6.7E-01	0	1.4E-02	1.4E-01	-3.4E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	6.1E+01	1.4E+01	2.0E+00	0	2.4E-01	1.1E+00	-6.5E+00
Use of non-renewable primary energy resources used as raw materials	MJ	1.1E+01	0.0E+00	-3.4E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	7.2E+01	1.4E+01	1.9E+00	0	2.4E-01	1.1E+00	-6.5E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	<u></u> *	*
Net use of fresh water	m^3	2.5E-02	8.9E-04	2.5E-03	0	1.5E-05	2.6E-04	-2.3E-03

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	6.6E-06	6.3E-07	4.2E-08	0	2.0E-08	3.1E-08	-1.1E-08
Non-hazardous waste disposed	kg	4.1E-01	2.1E-03	1.5E-01	0	3.8E-05	5.3E+00	-1.7E-02
Radioactive waste disposed*	kg	1.3E-03	1.7E-05	4.2E-05	0	3.0E-07	1.2E-05	-9.1E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A 4	A5	B1	C2	C4	D
Component for re-use	kg	1.40E-06	n/a	4.18E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	2.47E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	2.84E-04	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

