

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

RW3

The results are for: 1 m2 of product,

with a thickness of

100 mm.

Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Prod	duct st	age	Constr instal sta	lation		Use stage						End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Х	Х	Х	Х	Х	Х	MNA	MNA	MNA	MNA	MNA	MNA	Х	Х	Х	х

_	and loads								
	bey								
	e sy								
bo	oun	daı	ie						
	•	•							
Rense-	Recovery-	Recycling-	potential						
D									
	х								

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Global warming	kg CO ₂ eqv	6.3E+00	1.1E+00	1.2E+00	0	2.0E-02	8.3E-02	-2.8E-01
The global warming punit of that			al contribution to ference gas, carbo					
	fozone is caused	by the breakdo	1.9E-16 h shields the earth wn of certain chlo hen they reach the molecules.	rine and/or bro	mine co	ntaining comp	ounds	-1.6E-14
Acidification Acid depositions have sources for emission		ubstances are ag	•	il fuel combust			_	-9.5E-04
Eutrophication	kg PO ₄ ³⁻ eqv	5.6E-03	1.8E-04	2.2E-04	0	4.5E-06	6.0E-05	-1.3E-04
Excessive enrichme	ent of waters and	continental sur	faces with nutrien	its, and the asso	ociated a	dverse biolog	ical effects.	
Photochemical ozone creation	kg Ethene eqv	1.4E-03	-3.8E-06	6.0E-05	6.2E-10	-1.9E-06	4.0E-05	-1.1E-04
Chemical reactions b		0 0,	of the sun. The re one is an example	,	-	•	arbons in the	
Depletion abiotic resources -elements	kg Sb eqv	1.4E-05	9.5E-08	2.4E-08	0	1.6E-09	3.2E-08	-6.4E-08
Depletion abiotic resources fuels	MJ	7.6E+01	1.6E+01	2.0E+00	0	2.7E-01	1.2E+00	-7.1E+00
Consumpt	tion of non-renew	able resources,	thereby lowering	their availabilit	ty for fut	ure generatio	ns.	

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	2.4E+01	8.7E+00	1.1E+01	0	1.5E-02	1.6E-01	-3.9E+00
Use of renewable primary energy resources used as raw materials	MJ	1.3E+01	0.0E+00	-9.9E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	3.7E+01	8.7E-01	7.7E-01	0	1.6E-02	1.6E-01	-3.9E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	6.9E+01	1.5E+01	2.2E+00	0	2.7E-01	1.2E+00	-7.4E+00
Use of non-renewable primary energy resources used as raw materials	MJ	1.2E+01	0.0E+00	-3.9E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	8.1E+01	1.6E+01	2.2E+00	0	2.7E-01	1.2E+00	-7.4E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m ³	2.8E-02	1.0E-03	2.8E-03	0	1.7E-05	3.0E-04	-2.6E-03

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	7.0E-06	7.3E-07	4.8E-08	0	2.2E-08	3.3E-08	-1.3E-08
Non-hazardous waste disposed	kg	4.6E-01	2.4E-03	1.7E-01	0	4.3E-05	6.1E+00	-1.9E-02
Radioactive waste disposed*	kg	1.4E-03	1.9E-05	4.8E-05	0	3.4E-07	1.4E-05	-1.0E-05

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A 5	B1	C2	C4	D
Component for re-use	kg	1.61E-06	n/a	4.78E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	2.83E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	3.24E-04	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

