

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL[®] Environmental Product Declaration, attached.

 ROCKWOOL[®] stone wool product:
 Ablative Coated Batt Base Material

 The results are for:
 1 m2 of product,
 with a thickness of
 50 mm.

 Thermal resistance as stated in product data sheet.
 50 mm.
 50 mm.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL[®] Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	Product stage Construction stage			Use stage						End-of-life stage				and loads beyond the system boundarie		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	х	х	х	х	х	MNA	MNA	MNA	MNA	MNA	MNA	х	х	х	х	х

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D	
Global warming	kg CO_2 eqv	7.8E+00	1.7E+00	1.7E+00	0	2.9E-02	1.2E-01	-4.2E-0	
The global warming p unit of that	-		al contribution to ference gas, carbo	•	•	•			
Ozone depletion	kg CFC11 eqv	2.3E-08	2.8E-16	2.7E-09	0	4.7E-18	6.5E-16	-2.4E-14	
Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.									
Acidification	kg SO ₂ eqv	3.2E-02	1.3E-03	9.4E-04	0	2.5E-05	7.6E-04	-1.4E-03	
Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.									
Eutrophication	kg PO4 ³⁻ eqv	7.9E-03	2.7E-04	3.3E-04	0	5.1E-06	8.6E-05	-2.0E-04	
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	its, and the ass	ociated a	adverse biolog	ical effects.		
Photochemical ozone creation	kg Ethene eqv	1.6E-03	-5.8E-06	9.0E-05	9.3E-10	-9.5E-07	5.7E-05	-1.6E-04	
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.									
Depletion abiotic resources -elements	kg Sb eqv	3.2E-06	1.4E-07	3.5E-08	0	2.4E-09	4.6E-08	-9.6E-08	
Depletion abiotic resources fuels	MJ	9.1E+01	2.3E+01	3.1E+00	0	3.9E-01	1.7E+00	-1.1E+0	
Consumpt	ion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generatio	ns.		

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	3.0E+01	1.3E+01	1.6E+01	0	2.2E-02	2.3E-01	-5.9E+00
Use of renewable primary energy resources used as raw materials	MJ	2.0E+01	0.0E+00	-1.5E+01	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	5.0E+01	1.3E+00	1.2E+00	0	2.2E-02	2.3E-01	-5.9E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	8.1E+01	2.3E+01	3.3E+00	0	3.9E-01	1.7E+00	-1.1E+01
Use of non-renewable primary energy resources used as raw materials	MJ	1.2E+01	0.0E+00	-5.8E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	9.3E+01	2.3E+01	3.3E+00	0	3.9E-01	1.7E+00	-1.1E+01
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m³	2.9E-02	1.5E-03	4.3E-03	0	2.5E-05	4.4E-04	-3.9E-03

* There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	2.4E-06	1.1E-06	7.2E-08	0	1.8E-08	2.6E-08	-2.0E-08
Non-hazardous waste disposed	kg	4.2E-01	3.6E-03	2.5E-01	0	6.0E-05	8.7E+00	-2.8E-02
Radioactive waste disposed*	kg	4.9E-04	2.9E-05	7.3E-05	0	4.8E-07	2.0E-05	-1.6E-05

* There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	2.41E-06	n/a	7.17E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	4.24E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	4.86E-04	n/a	n/a	n/a	n/a	n/a	n/a
Exported energy	MJ	n/a	n/a	n/a	n/a	n/a	n/a	n/a

CREATE AND PROTECT®