

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

Beamclad

The results are for: 1 m2 of product,

with a thickness of

25 mm.

Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Constr instal sta	lation		Use stage						End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Х	х	х	Х	Х	Х	MNA	MNA	MNA	MNA	MNA	MNA	х	Х	х	х

_	and loads								
	oey								
	ey S								
	ະ ວ _ັ ງ ວun								
DC	Juli	uai	ie						
Rense-	Recovery-	Recycling-	potential						
)							
х									

Environmental impact

Parameter	Unit	A1-3	A4	A5	В1	C2	C4	D
Global warming	kg CO ₂ eqv	4.5E+00	8.1E-01	8.2E-01	0	1.4E-02	5.9E-02	-2.0E-01
The global warming p unit of that	· ·		al contribution to ference gas, carbo	•	~	•		
	ozone is caused	by the breakdov	1.3E-16 h shields the eartl wn of certain chlo hen they reach th molecules.	rine and/or bro	omine co	ntaining comp	ounds	-1.1E-14
Acidification Acid depositions have sources for emission		ıbstances are ag	•	il fuel combust				-6.8E-04
Eutrophication	kg PO ₄ ³⁻ eqv	4.0E-03	1.3E-04	1.6E-04	0	3.3E-06	4.3E-05	-9.3E-05
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	nts, and the ass	ociated a	dverse biolog	cal effects.	
Photochemical ozone creation	kg Ethene eqv	1.0E-03	-2.7E-06	4.3E-05	4.4E-10	-1.6E-06	2.9E-05	-7.7E-05
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.								
Depletion abiotic resources -elements	kg Sb eqv	1.2E-05	6.7E-08	1.7E-08	0	1.2E-09	2.3E-08	-4.5E-08
Depletion abiotic resources fuels	MJ	5.5E+01	1.1E+01	1.4E+00	0	1.9E-01	8.4E-01	-5.0E+00
Consumpt	ion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generation	ıs.	

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	1.7E+01	6.1E+00	7.6E+00	0	1.1E-02	1.1E-01	-2.8E+00
Use of renewable primary energy resources used as raw materials	MJ	9.2E+00	0.0E+00	-7.0E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	2.6E+01	6.2E-01	5.4E-01	0	1.1E-02	1.1E-01	-2.8E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	5.0E+01	1.1E+01	1.6E+00	0	1.9E-01	8.6E-01	-5.2E+00
Use of non-renewable primary energy resources used as raw materials	MJ	8.6E+00	0.0E+00	-2.7E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	5.9E+01	1.1E+01	1.6E+00	0	1.9E-01	8.6E-01	-5.2E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m^3	2.0E-02	7.2E-04	2.0E-03	0	1.2E-05	2.1E-04	-1.8E-03

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	5.5E-06	5.1E-07	3.4E-08	0	1.7E-08	2.6E-08	-9.2E-09
Non-hazardous waste disposed	kg	3.3E-01	1.7E-03	1.2E-01	0	3.1E-05	4.3E+00	-1.3E-02
Radioactive waste disposed*	kg	1.1E-03	1.4E-05	3.4E-05	0	2.4E-07	1.0E-05	-7.4E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	1.14E-06	n/a	3.39E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	2.00E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	2.30E-04	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

