ROCKWOOL

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL[®] Environmental Product Declaration, attached.

ROCKWOOL[®] stone wool product: Rocklap H&V Pipe Sections 1 linear metre of product, The results are for: Inner diameter of pipe section:

with a thickness of 20 mm. 17 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Construction age installation stage				Use stage					End-of-life stage				and loads beyond the system boundarie
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	х	х	х	х	х	MNA	MNA	MNA	MNA	MNA	MNA	х	х	х	х	х

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D	
Global warming	$kg \ CO_2 \ eqv$	3.6E-01	5.3E-02	5.4E-02	0	9.5E-04	4.0E-03	-1.3E-02	
The global warming p unit of that	•		tal contribution to ference gas, carbo	•	•	•			
Ozone depletion	kg CFC11 eqv	7.5E-10	8.7E-18	8.3E-11	0	7.8E-17	4.4E-15	-7.4E-16	
Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.									
Acidification	kg SO ₂ eqv	1.4E-03	4.2E-05	2.9E-05	0	1.0E-06	2.5E-05	-4.4E-05	
Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.									
Eutrophication	kg PO4 ³⁻ eqv	2.8E-04	8.5E-06	1.0E-05	0	2.4E-07	2.9E-06	-6.1E-06	
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	its, and the ass	ociated a	adverse biolog	ical effects.		
Photochemical ozone creation	kg Ethene eqv	8.1E-05	-1.8E-07	2.8E-06	2.9E-11	-1.2E-07	1.9E-06	-5.0E-06	
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.									
Depletion abiotic resources -elements	kg Sb eqv	3.6E-07	4.4E-09	1.1E-09	0	7.7E-11	1.5E-09	-3.0E-09	
Depletion abiotic resources fuels	MJ	4.4E+00	7.2E-01	9.5E-02	0	1.3E-02	5.6E-02	-3.3E-01	
Consumpt	ion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generatio	ns.		

ROCKWOOL

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	1.4E+00	4.0E-01	5.0E-01	0	7.4E-04	7.4E-03	-1.8E-01
Use of renewable primary energy resources used as raw materials	MJ	6.0E-01	0.0E+00	-4.6E-01	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	2.0E+00	4.1E-02	3.6E-02	0	7.5E-04	7.4E-03	-1.8E-01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	3.9E+00	7.2E-01	1.0E-01	0	1.3E-02	5.8E-02	-3.4E-01
Use of non-renewable primary energy resources used as raw materials	MJ	8.7E-01	0.0E+00	-1.8E-03	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	4.8E+00	7.2E-01	1.0E-01	0	1.3E-02	5.8E-02	-3.4E-01
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m ³	1.8E-03	4.7E-05	1.3E-04	0	7.9E-07	1.4E-05	-1.2E-04

* There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	5.7E-07	3.4E-08	2.2E-09	0	1.3E-09	2.0E-09	-6.0E-10
Non-hazardous waste disposed	kg	3.3E-02	1.1E-04	7.9E-03	0	2.1E-06	2.9E-01	-8.8E-04
Radioactive waste disposed*	kg	1.4E-04	9.0E-07	2.3E-06	0	1.6E-08	6.7E-07	-4.8E-07

* There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	7.46E-08	n/a	2.22E-09	n/a	n/a	n/a	n/a
Materials for recycling	kg	1.31E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	1.51E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy	MJ	n/a	n/a	n/a	n/a	n/a	n/a	n/a
						CRE	ATE AND F	PROTECT®