

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product: Soffit Slab

> The results are for: 1 m2 of product, with a thickness of 50 mm.

Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Constr instal sta	lation			l	Jse stage	e			End-of-life stage			and loads beyond the system boundarie	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	х	Х	Х	х	Х	MNA	MNA	MNA	MNA	MNA	MNA	Х	х	Х	Х	х

Environmental impact

Parameter	Unit	A1-3	A 4	A 5	B1	C2	C4	D	
Global warming	kg CO ₂ eqv	4.5E+00	9.5E-01	9.7E-01	0	1.6E-02	6.8E-02	-2.4E	
The global warming punit of that	· ·		cal contribution to eference gas, carbo	•	_	•			
Ozone depletion	kg CFC11 eqv	1.3E-08	1.6E-16	1.5E-09	0	4.7E-16	2.7E-14	-1.3E	
Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.									
Acidification	kg SO ₂ eqv	1.9E-02	7.5E-04	5.2E-04	0	1.5E-05	4.3E-04	-8.0E	
Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.									
Eutrophication	kg PO ₄ 3- eqv	4.5E-03	1.5E-04	1.8E-04	0	3.3E-06	4.9E-05	-1.1E	
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	nts, and the ass	ociated a	adverse biolog	ical effects.		
Photochemical ozone creation	kg Ethene eqv	9.8E-04	-3.2E-06	5.0E-05	5.2E-10	-1.1E-06	3.3E-05	-9.0E	
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.									
Depletion abiotic resources -elements	kg Sb eqv	1.1E-05	7.9E-08	2.0E-08	0	1.3E-09	2.6E-08	-5.3E	
Depletion abiotic resources fuels	MJ	5.3E+01	1.3E+01	1.7E+00	0	2.2E-01	9.6E-01	-5.9E	
Consumpt	tion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generatio	ns.		

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	1.7E+01	7.2E+00	8.9E+00	0	1.3E-02	1.3E-01	-3.3E+00
Use of renewable primary energy resources used as raw materials	MJ	1.1E+01	0.0E+00	-8.3E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	2.8E+01	7.3E-01	6.4E-01	0	1.3E-02	1.3E-01	-3.3E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	4.9E+01	1.3E+01	1.9E+00	0	2.2E-01	9.9E-01	-6.1E+00
Use of non-renewable primary energy resources used as raw materials	MJ	6.9E+00	0.0E+00	-3.2E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	5.6E+01	1.3E+01	1.8E+00	0	2.2E-01	9.9E-01	-6.1E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m^3	1.8E-02	8.5E-04	2.4E-03	0	1.4E-05	2.5E-04	-2.2E-03

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A 5	B1	C2	C4	D
Hazardous waste disposed	kg	2.9E-06	6.0E-07	4.0E-08	0	1.4E-08	2.2E-08	-1.1E-08
Non-hazardous waste disposed	kg	2.6E-01	2.0E-03	1.4E-01	0	3.4E-05	5.0E+00	-1.6E-02
Radioactive waste disposed*	kg	4.3E-04	1.6E-05	4.0E-05	0	2.8E-07	1.1E-05	-8.7E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Oatpat none								
Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	1.34E-06	n/a	3.98E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	2.36E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	2.70E-04	n/a	n/a	n/a	n/a	n/a	n/a
Exported energy	MJ	n/a	n/a	n/a	n/a	n/a	n/a	n/a