

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete

ROCKWOOL[®] Environmental Product Declaration, attached.

ROCKWOOL[®] stone wool product:

Beamclad

with a thickness of 50 mm.

The results are for: 1 m2 of product, Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL[®] Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Proc	duct st	age	Constr instal sta	lation				Use stage	e			Er	nd-of-l	and loads beyond the system boundarie		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	х	х	х	х	х	MNA	MNA	MNA	MNA	MNA	MNA	х	х	х	х	х

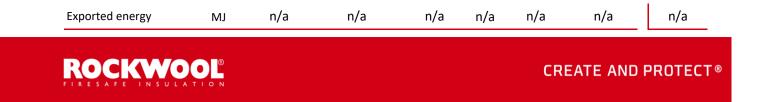
Environmental	impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Global warming	$kg CO_2 eqv$	8.9E+00	1.7E+00	1.7E+00	0	3.0E-02	1.2E-01	-4.2E-01
The global warming p unit of that	•		tal contribution to ference gas, carbo	•	•	•		
	fozone is caused	by the breakdo	2.8E-16 h shields the earth wn of certain chlo hen they reach the molecules.	rine and/or bro	omine co	ntaining comp	ounds	-2.4E-14
Acidification Acid depositions hav sources for emissio		bstances are ag		il fuel combust				-1.4E-03
Eutrophication Excessive enrichme	kg PO_4^{3-} eqv ent of waters and	8.3E-03	2.7E-04	3.3E-04	0 ociated a	6.2E-06 adverse biolog	8.9E-05 ical effects.	-2.0E-04
Photochemical ozone creation Chemical reactions b			-5.8E-06 of the sun. The re one is an example				6.0E-05 arbons in the	-1.6E-04
Depletion abiotic resources -elements	kg Sb eqv	1.5E-05	1.4E-07	3.5E-08	0	2.4E-09	4.7E-08	-9.6E-08
Depletion abiotic resources fuels	MJ	1.1E+02	2.3E+01	3.1E+00	0	4.0E-01	1.7E+00	-1.1E+01
Consumpt	tion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generatio	ns.	

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	3.4E+01	1.3E+01	1.6E+01	0	2.3E-02	2.3E-01	-5.9E+00
Use of renewable primary energy resources used as raw materials	MJ	2.0E+01	0.0E+00	-1.5E+01	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	5.3E+01	1.3E+00	1.2E+00	0	2.3E-02	2.3E-01	-5.9E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	9.6E+01	2.3E+01	3.3E+00	0	4.0E-01	1.8E+00	-1.1E+01
Use of non-renewable primary energy resources used as raw materials	MJ	1.6E+01	0.0E+00	-5.8E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	1.1E+02	2.3E+01	3.3E+00	0	4.0E-01	1.8E+00	-1.1E+01
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m³	3.7E-02	1.5E-03	4.3E-03	0	2.5E-05	4.5E-04	-3.9E-03

* There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.


Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	7.9E-06	1.1E-06	7.2E-08	0	2.8E-08	4.2E-08	-2.0E-08
Non-hazardous waste disposed	kg	6.0E-01	3.6E-03	2.5E-01	0	6.3E-05	9.0E+00	-2.8E-02
Radioactive waste disposed*	kg	1.6E-03	2.9E-05	7.3E-05	0	5.0E-07	2.1E-05	-1.6E-05

* There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	2.41E-06	n/a	7.17E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	4.24E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	4.86E-04	n/a	n/a	n/a	n/a	n/a	n/a

