

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL[®] Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

ROCKLAP H&V Section

The results are for: 1 linear metre of product, with Inner diameter of pipe section:

with a thickness of 40 mm.

34 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

	-						`								-
Pro	duct st	age	Constr instal sta	lation		Use stage						End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Х	Х	х	Х	Х	Х	MNA	MNA	MNA	MNA	MNA	MNA	х	Х	Х	Х

l		епі							
		oad							
		onc							
the	e sy	/ste	m						
bo	oun	dar	ie						
		2							
Rense-	Recovery-	Recycling-	potential						
)							
	х								

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Global warming	kg CO ₂ eqv	1.4E+00	2.1E-01	2.2E-01	0	4.1E-03	1.7E-02	-5.3E-02
The global warming punit of that	· ·		al contribution to ference gas, carbo	•	_	•		
	f ozone is caused	by the breakdov	3.5E-17 In shields the earth wn of certain chlo nen they reach the molecules.	rine and/or bro	mine co	ntaining comp	ounds	-3.0E-15
Acidification Acid depositions have sources for emission		ıbstances are ag		il fuel combust				-1.8E-04
Eutrophication	kg PO ₄ ³⁻ eqv	1.2E-03	3.4E-05	4.1E-05	0	1.2E-06	1.2E-05	-2.4E-05
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	nts, and the ass	ociated a	dverse biolog	ical effects.	
Photochemical ozone creation	kg Ethene eqv	3.3E-04	-7.1E-07	1.1E-05	1.2E-10	-8.8E-07	8.4E-06	-2.0E-05
Chemical reactions b			of the sun. The re one is an example				arbons in the	
Depletion abiotic resources -elements	kg Sb eqv	1.0E-05	1.8E-08	4.4E-09	0	3.2E-10	6.5E-09	-1.2E-08
Depletion abiotic resources fuels	MJ	1.7E+01	2.9E+00	3.8E-01	0	5.5E-02	2.4E-01	-1.3E+00
Consumpt	tion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generatio	ns.	

Resource use

ivesource ase								
Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	5.0E+00	1.6E+00	2.0E+00	0	3.2E-03	3.1E-02	-7.3E-01
Use of renewable primary energy resources used as raw materials	MJ	2.4E+00	0.0E+00	-1.8E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	7.4E+00	1.6E-01	1.4E-01	0	3.2E-03	3.1E-02	-7.3E-01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	1.7E+01	2.9E+00	4.1E-01	0	5.5E-02	2.4E-01	-1.4E+00
Use of non-renewable primary energy resources used as raw materials	MJ	2.5E+00	0.0E+00	-7.2E-03	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	1.9E+01	2.9E+00	4.1E-01	0	5.5E-02	2.4E-01	-1.4E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m^3	6.9E-03	1.9E-04	5.3E-04	0	3.2E-06	6.0E-05	-4.8E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	2.8E-06	1.3E-07	8.9E-09	0	7.8E-09	1.2E-08	-2.4E-09
Non-hazardous waste disposed	kg	1.1E-01	4.4E-04	3.1E-02	0	9.1E-06	1.2E+00	-3.5E-03
Radioactive waste disposed*	kg	4.7E-04	3.6E-06	9.0E-06	0	6.9E-08	2.9E-06	-1.9E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A 5	B1	C2	C4	D
Component for re-use	kg	2.98E-07	n/a	8.88E-09	n/a	n/a	n/a	n/a
Materials for recycling	kg	5.25E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	6.03E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

