

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

DUCT WRAP 5000x1000x25

The results are for: 1 m2 of product,

with a thickness of

25 mm.

Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Constr instal sta	lation		Use stage						End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4
Х	х	Х	х	х	х	MNA	MNA	MNA	MNA	MNA	MNA	Х	х	Х	Х

	en	еш	S						
aı	nd I	oad	sb						
ŀ	реу	ond	t						
	e s								
	oun								
ы			ic						
	,	•							
Rense-	Recovery-	Recycling-	potential						
D									
	Х								

Environmental impact

Parameter	Unit	A1-3	A4	A 5	B1	C2	C4		
Global warming	kg CO ₂ eqv	1.9E+00	2.9E-01	2.9E-01	0	5.1E-03	2.1E-02	-7.16	
The global warming punit of that	_		tal contribution to eference gas, carbo	~	_	_			
Ozone depletion	kg CFC11 eqv	4.1E-09	4.7E-17	4.5E-10	0	4.4E-16	2.5E-14	-4.0E	
Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.									
Acidification	kg SO ₂ eqv	7.7E-03	2.2E-04	1.6E-04	0	5.6E-06	1.4E-04	-2.4E	
Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.									
Eutrophication	kg PO ₄ 3- eqv	1.5E-03	4.6E-05	5.5E-05	0	1.3E-06	1.6E-05	-3.3E	
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	nts, and the ass	ociated a	adverse biolog	ical effects.		
Photochemical ozone creation	kg Ethene eqv	4.4E-04	-9.6E-07	1.5E-05	1.5E-10	-6.9E-07	1.0E-05	-2.7E	
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.									
Depletion abiotic resources -elements	kg Sb eqv	2.0E-06	2.4E-08	5.9E-09	0	4.1E-10	8.2E-09	-1.6E	
Depletion abiotic resources fuels	MJ	2.4E+01	3.9E+00	5.1E-01	0	7.0E-02	3.0E-01	-1.8E	
Consumpt	tion of non-renew	able resources,	thereby lowering	their availabili	ity for fut	ture generatio	ns.		

Resource use

Parameter	Unit	A1-3	A4	A 5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	7.4E+00	2.2E+00	2.7E+00	0	4.0E-03	4.0E-02	-9.8E-01
Use of renewable primary energy resources used as raw materials	MJ	3.3E+00	0.0E+00	-2.5E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	1.1E+01	2.2E-01	1.9E-01	0	4.0E-03	4.0E-02	-9.8E-01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	2.1E+01	3.9E+00	5.6E-01	0	7.0E-02	3.1E-01	-1.8E+00
Use of non-renewable primary energy resources used as raw materials	MJ	4.8E+00	0.0E+00	-9.7E-03	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	2.6E+01	3.9E+00	5.5E-01	0	7.0E-02	3.1E-01	-1.8E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m^3	9.9E-03	2.5E-04	7.1E-04	0	4.2E-06	7.7E-05	-6.5E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A 4	A 5	В1	C2	C4	D
Hazardous waste disposed	kg	3.2E-06	1.8E-07	1.2E-08	0	6.9E-09	1.1E-08	-3.3E-09
Non-hazardous waste disposed	kg	1.8E-01	6.0E-04	4.2E-02	0	1.1E-05	1.6E+00	-4.7E-03
Radioactive waste disposed*	kg	7.7E-04	4.8E-06	1.2E-05	0	8.7E-08	3.6E-06	-2.6E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

o airpar no mo								
Parameter	Unit	A1-3	A 4	A 5	B1	C2	C4	D
Component for re-use	kg	4.01E-07	n/a	1.19E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	7.07E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	8.10E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®