

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

ROCKLAP H&V Section

The results are for: 1 linear metre of product, wit Inner diameter of pipe section: 2

with a thickness of 25 mm.

219 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

	-						`								-
Pro	duct st	age	Constr instal sta	lation		Use stage					End-of-life stage				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Х	х	х	Х	Х	Х	MNA	MNA	MNA	MNA	MNA	MNA	х	Х	Х	Х

l	Denenis								
		oad							
		onc							
the	e sy	/ste	m						
bo	oun	dar	ie						
		2							
Rense-	Recovery-	Recycling-	potential						
D									
	х								

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Global warming	kg CO ₂ eqv	2.7E+00	4.4E-01	4.4E-01	0	8.0E-03	3.3E-02	-1.1E-01
The global warming punit of that			al contribution to ference gas, carbo					
	fozone is caused	by the breakdo	7.2E-17 h shields the earth wn of certain chlo hen they reach the molecules.	rine and/or bro	mine co	ntaining comp	ounds	-6.1E-15
Acidification Acid depositions have sources for emission		ıbstances are ag	•	il fuel combust			_	-3.7E-04
Eutrophication Excessive enrichment	$kg PO_4^{3-} eqv$	2.3E-03 continental sur	7.0E-05	8.5E-05	0 ociated a	2.1E-06 adverse biolog	2.4E-05 ical effects.	-5.0E-05
Photochemical ozone creation Chemical reactions b		0 0,		`	•	•	1.6E-05 arbons in the	-4.2E-05
	presence of sun	ignt to form ozo	one is an example	of a photocher	nicai rea	ction.		
Depletion abiotic resources -elements	kg Sb eqv	1.1E-05	3.6E-08	9.0E-09	0	6.4E-10	1.3E-08	-2.4E-08
Depletion abiotic resources fuels	MJ	3.4E+01	6.0E+00	7.8E-01	0	1.1E-01	4.7E-01	-2.7E+00
Consumpt	tion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generatio	ns.	

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	1.0E+01	3.3E+00	4.1E+00	0	6.3E-03	6.2E-02	-1.5E+00
Use of renewable primary energy resources used as raw materials	MJ	5.0E+00	0.0E+00	-3.8E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	1.5E+01	3.3E-01	2.9E-01	0	6.3E-03	6.2E-02	-1.5E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	3.1E+01	5.9E+00	8.5E-01	0	1.1E-01	4.8E-01	-2.8E+00
Use of non-renewable primary energy resources used as raw materials	MJ	5.5E+00	0.0E+00	-1.5E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	3.7E+01	6.0E+00	8.4E-01	0	1.1E-01	4.8E-01	-2.8E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m^3	1.3E-02	3.9E-04	1.1E-03	0	6.5E-06	1.2E-04	-9.9E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	4.5E-06	2.8E-07	1.8E-08	0	1.2E-08	1.9E-08	-5.0E-09
Non-hazardous waste disposed	kg	2.2E-01	9.1E-04	6.5E-02	0	1.8E-05	2.4E+00	-7.3E-03
Radioactive waste disposed*	kg	8.7E-04	7.4E-06	1.9E-05	0	1.4E-07	5.7E-06	-4.0E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.


Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	6.15E-07	n/a	1.83E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	1.08E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	1.24E-04	n/a	n/a	n/a	n/a	n/a	n/a


Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

