

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

ROCKLAP H&V Section

The results are for: 1 linear metre of product, with a thickness of 40 mm. Inner diameter of pipe section: 35 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Constr instal sta	lation		Use stage					End-of-life stage				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4
Х	Х	Х	Х	х	х	MNA	MNA	MNA	MNA	MNA	MNA	Х	Х	х	х

ľ			еш								
ı	and loads										
ı	beyond										
ı	th	e sı	vste	m							
ı	the system boundarie										
ı	boundane										
۱		Ţ,									
	Rense-	Recovery-	Recycling-	potential							
l)								
l)	Κ								

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Global warming	kg CO ₂ eqv	1.2E+00	2.1E-01	2.2E-01	0	3.7E-03	1.6E-02	-5.3E-02
The global warming p unit of that	· ·		al contribution to ference gas, carbo	· ·	~	•		
	ozone is caused	by the breakdov	3.5E-17 h shields the earth wn of certain chlo hen they reach th molecules.	rine and/or bro	omine co	ntaining comp	ounds	-3.0E-15
Acidification Acid depositions have sources for emission		ıbstances are ag	•	il fuel combust				-1.8E-04
Eutrophication Excessive enrichme	$kg PO_4^{3-} eqv$ ent of waters and	1.1E-03 continental sur	3.4E-05 faces with nutrier	4.2E-05 ats, and the ass	0 ociated a	8.0E-07	1.1E-05 ical effects.	-2.5E-05
Photochemical ozone creation Chemical reactions be	•	0 0.	-7.2E-07 of the sun. The re one is an example		gen oxide	•	7.5E-06 arbons in the	-2.0E-05
Depletion abiotic resources -elements	kg Sb eqv	9.4E-07	1.8E-08	4.4E-09	0	3.0E-10	6.0E-09	-1.2E-08
Depletion abiotic resources fuels	MJ	1.5E+01	2.9E+00	3.9E-01	0	5.1E-02	2.2E-01	-1.3E+00
Consumpt	ion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generation	ns.	

ROCKWOOL

Resource use

itesource use								
Parameter	Unit	A1-3	A 4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	4.6E+00	1.6E+00	2.0E+00	0	2.9E-03	2.9E-02	-7.4E-01
Use of renewable primary energy resources used as raw materials	MJ	2.5E+00	0.0E+00	-1.9E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	7.1E+00	1.6E-01	1.4E-01	0	2.9E-03	2.9E-02	-7.4E-01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	1.3E+01	2.9E+00	4.2E-01	0	5.1E-02	2.3E-01	-1.4E+00
Use of non-renewable primary energy resources used as raw materials	MJ	2.5E+00	0.0E+00	-7.3E-03	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	1.6E+01	2.9E+00	4.1E-01	0	5.1E-02	2.3E-01	-1.4E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m^3	5.5E-03	1.9E-04	5.3E-04	0	3.2E-06	5.6E-05	-4.9E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	1.3E-06	1.4E-07	9.0E-09	0	3.7E-09	5.7E-09	-2.5E-09
Non-hazardous waste disposed	kg	9.4E-02	4.5E-04	3.2E-02	0	7.9E-06	1.1E+00	-3.6E-03
Radioactive waste disposed*	kg	3.1E-04	3.6E-06	9.1E-06	0	6.3E-08	2.6E-06	-2.0E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	3.02E-07	n/a	9.00E-09	n/a	n/a	n/a	n/a
Materials for recycling	kg	5.33E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	6.11E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

