

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL[®] Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

Rocklap H&V Pipe Sections

The results are for: 1 linear metre of product, with a thickness of 40 mm.

Inner diameter of pipe section: 76 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age		ruction lation ige	Use stage					End-of-life stage					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4
Х	х	Х	х	х	х	MNA	MNA	MNA	MNA	MNA	MNA	Х	х	х	Х

	en	еш	S
aı	nd I	oad	ds
ŀ	эеу	ond	t
the	e sy	/ste	m
		dar	
	,		
	<u>,</u>	-	_
φ	Recovery	Recycling	tia
ડense-	8	딧	en
å	Ö	5	potent
_	ď	ď	Ω
	-)	
	L	,	
)	Κ	

Environmental impact

Parameter	Unit	A1-3	A 4	A 5	B1	C2	C4	D
Global warming	kg CO ₂ eqv	1.8E+00	3.3E-01	3.4E-01	0	5.7E-03	2.4E-02	-8.3E-02
The global warming p unit of that			tal contribution to eference gas, carbo					
Ozone depletion	kg CFC11 eqv	4.6E-09	5.5E-17	5.2E-10	0	2.1E-16	1.2E-14	-4.6E-15
Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.								
Acidification	kg SO ₂ eqv	7.3E-03	2.6E-04	1.8E-04	0	5.5E-06	1.5E-04	-2.8E-04
Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.								
Eutrophication	kg PO ₄ 3- eqv	1.6E-03	5.3E-05	6.5E-05	0	1.2E-06	1.7E-05	-3.8E-05
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	nts, and the ass	ociated a	adverse biolog	ical effects.	
Photochemical ozone creation	kg Ethene eqv	4.0E-04	-1.1E-06	1.8E-05	1.8E-10	-4.5E-07	1.2E-05	-3.2E-05
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.								
Depletion abiotic resources -elements	kg Sb eqv	1.3E-06	2.8E-08	6.9E-09	0	4.7E-10	9.2E-09	-1.9E-08
Depletion abiotic resources fuels	MJ	2.2E+01	4.5E+00	6.0E-01	0	7.8E-02	3.4E-01	-2.1E+00
Consumpt	ion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generatio	ns.	

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	7.0E+00	2.5E+00	3.1E+00	0	4.4E-03	4.5E-02	-1.1E+00
Use of renewable primary energy resources used as raw materials	MJ	3.8E+00	0.0E+00	-2.9E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	1.1E+01	2.5E-01	2.2E-01	0	4.4E-03	4.5E-02	-1.1E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	2.0E+01	4.5E+00	6.5E-01	0	7.8E-02	3.5E-01	-2.1E+00
Use of non-renewable primary energy resources used as raw materials	MJ	3.7E+00	0.0E+00	-1.1E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	2.3E+01	4.5E+00	6.4E-01	0	7.8E-02	3.5E-01	-2.1E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m^3	8.1E-03	3.0E-04	8.3E-04	0	4.9E-06	8.7E-05	-7.5E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A 4	A 5	B1	C2	C4	D
Hazardous waste disposed	kg	1.8E-06	2.1E-07	1.4E-08	0	5.4E-09	8.3E-09	-3.8E-09
Non-hazardous waste disposed	kg	1.4E-01	7.0E-04	4.9E-02	0	1.2E-05	1.7E+00	-5.5E-03
Radioactive waste disposed*	kg	4.3E-04	5.6E-06	1.4E-05	0	9.7E-08	4.0E-06	-3.0E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A 4	A 5	B1	C2	C4	D
Component for re-use	kg	4.68E-07	n/a	1.39E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	8.24E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	9.45E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®