

# Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

ProRox SL 980

The results are for: 1 m2 of product,

with a thickness of

50 mm.

Thermal resistance as stated in product data sheet.

#### Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

| Pro           | duct st   | age           | Constr<br>instal<br>sta | lation   |     | Use stage   |        |             |               |                        |                       | End-of-life stage          |           |                  |          |
|---------------|-----------|---------------|-------------------------|----------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|----------|
| Raw materials | Transport | Manufacturing | Transport               | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing | Disposal |
| A1            | A2        | А3            | A4                      | A5       | B1  | B2          | В3     | B4          | B5            | B6                     | B7                    | C1                         | C2        | C3               | C4       |
| Х             | Х         | х             | Х                       | Х        | Х   | MNA         | MNA    | MNA         | MNA           | MNA                    | MNA                   | х                          | Х         | х                | х        |

| _      | Denenis   |            |           |  |  |  |  |  |  |  |
|--------|-----------|------------|-----------|--|--|--|--|--|--|--|
| aı     | nd I      | oad        | ds        |  |  |  |  |  |  |  |
| ı      | эеу       | ond        | t         |  |  |  |  |  |  |  |
|        | e sy      |            |           |  |  |  |  |  |  |  |
|        | oun       |            |           |  |  |  |  |  |  |  |
| 00     | Juli      | uai        | ic        |  |  |  |  |  |  |  |
|        | Ì         |            |           |  |  |  |  |  |  |  |
| Rense- | Recovery- | Recycling- | potential |  |  |  |  |  |  |  |
| D      |           |            |           |  |  |  |  |  |  |  |
| х      |           |            |           |  |  |  |  |  |  |  |

**Environmental impact** 

| Parameter                                                | Unit                   | A1-3                    | A4                                                                          | A5               | B1             | C2            | C4                    | D        |
|----------------------------------------------------------|------------------------|-------------------------|-----------------------------------------------------------------------------|------------------|----------------|---------------|-----------------------|----------|
| Global warming                                           | kg CO <sub>2</sub> eqv | 6.4E+00                 | 1.3E+00                                                                     | 1.4E+00          | 0              | 2.3E-02       | 9.5E-02               | -3.3E-01 |
| The global warming punit of that                         | •                      |                         | tal contribution to<br>ference gas, carbo                                   | •                | _              | •             |                       |          |
|                                                          | fozone is caused       | by the breakdo          | 2.2E-16 h shields the eartl wn of certain chlo hen they reach th molecules. | rine and/or bro  | mine co        | ntaining comp | ounds                 | -1.9E-14 |
| Acidification Acid depositions have sources for emission |                        | ıbstances are ag        | •                                                                           | il fuel combust  |                | •             | •                     | -1.1E-03 |
| Eutrophication  Excessive enrichme                       | $kg PO_4^{3-} eqv$     | 6.3E-03 continental sur | 2.1E-04 faces with nutrier                                                  | 2.6E-04          | O<br>ociated a | 4.6E-06       | 6.8E-05 ical effects. | -1.5E-04 |
| Photochemical ozone creation Chemical reactions b        |                        | 0 0.                    | -4.5E-06<br>of the sun. The re<br>one is an example                         | ,                | •              | •             | 4.6E-05 arbons in the | -1.3E-04 |
| Depletion abiotic resources -elements                    | kg Sb eqv              | 1.2E-05                 | 1.1E-07                                                                     | 2.7E-08          | 0              | 1.9E-09       | 3.6E-08               | -7.4E-08 |
| Depletion abiotic resources fuels                        | MJ                     | 7.6E+01                 | 1.8E+01                                                                     | 2.4E+00          | 0              | 3.1E-01       | 1.3E+00               | -8.3E+00 |
| Consumpt                                                 | tion of non-renew      | able resources,         | thereby lowering                                                            | their availabili | ty for fut     | ure generatio | ns.                   |          |



### Resource use

| rresource use                                                                                              |                |         |           |          |     |         |         |          |
|------------------------------------------------------------------------------------------------------------|----------------|---------|-----------|----------|-----|---------|---------|----------|
| Parameter                                                                                                  | Unit           | A1-3    | <b>A4</b> | A5       | B1  | C2      | C4      | D        |
| Use of renewable primary energy excluding renewable primary energy resources used as raw materials         | MJ             | 2.4E+01 | 1.0E+01   | 1.3E+01  | 0   | 1.8E-02 | 1.8E-01 | -4.6E+00 |
| Use of renewable primary energy resources used as raw materials                                            | MJ             | 1.5E+01 | 0.0E+00   | -1.2E+01 | 0   | 0.0E+00 | 0.0E+00 | 0.0E+00  |
| Total use of renewable primary energy resources                                                            | MJ             | 4.0E+01 | 1.0E+00   | 9.0E-01  | 0   | 1.8E-02 | 1.8E-01 | -4.6E+00 |
| Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials | MJ             | 6.8E+01 | 1.8E+01   | 2.6E+00  | 0   | 3.1E-01 | 1.4E+00 | -8.6E+00 |
| Use of non-renewable primary energy resources used as raw materials                                        | MJ             | 1.0E+01 | 0.0E+00   | -4.5E-02 | 0   | 0.0E+00 | 0.0E+00 | 0.0E+00  |
| Total use of non-renewable primary energy resources                                                        | MJ             | 7.9E+01 | 1.8E+01   | 2.6E+00  | 0   | 3.1E-01 | 1.4E+00 | -8.6E+00 |
| Use of secondary materials                                                                                 | kg             | 0.0E+00 | n/a       | 0.0E+00  | n/a | n/a     | n/a     | n/a      |
| Use of renewable secondary fuels                                                                           | MJ             | *       | *         | *        | *   | *       | *       | *        |
| Use of non-renewable secondary fuels                                                                       | MJ             | *       | *         | *        | *   | *       | *       | *        |
| Net use of fresh water                                                                                     | m <sup>3</sup> | 2.5E-02 | 1.2E-03   | 3.3E-03  | 0   | 2.0E-05 | 3.4E-04 | -3.0E-03 |

<sup>\*</sup> There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

## Waste categories

| Parameter                    | Unit | A1-3    | A4      | A5      | B1 | C2      | C4      | D        |
|------------------------------|------|---------|---------|---------|----|---------|---------|----------|
| Hazardous waste disposed     | kg   | 4.1E-06 | 8.5E-07 | 5.6E-08 | 0  | 1.9E-08 | 2.9E-08 | -1.5E-08 |
| Non-hazardous waste disposed | kg   | 3.8E-01 | 2.8E-03 | 2.0E-01 | 0  | 4.8E-05 | 6.9E+00 | -2.2E-02 |
| Radioactive waste disposed*  | kg   | 7.0E-04 | 2.2E-05 | 5.7E-05 | 0  | 3.8E-07 | 1.6E-05 | -1.2E-05 |

<sup>\*</sup> There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

## **Output flows**

| Parameter                     | Unit | A1-3     | A4  | A5       | B1  | C2  | C4  | D   |
|-------------------------------|------|----------|-----|----------|-----|-----|-----|-----|
| Component for re-use          | kg   | 1.87E-06 | n/a | 5.58E-08 | n/a | n/a | n/a | n/a |
| Materials for recycling       | kg   | 3.30E-01 | n/a | n/a      | n/a | n/a | n/a | n/a |
| Materials for energy recovery | kg   | 3.78E-04 | n/a | n/a      | n/a | n/a | n/a | n/a |

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®





