

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

Rocklap H&V Section

The results are for:

1 linear metre of product,

with a thickness of 52.5 mm

20 mm.

Inner diameter of pipe section:

Description of the system boundaries (x=included, MNA = Module not assessed)

Production stage			Construc	tion stage	Use stage						End-of-life stage			Benefits and loads beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling - potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	Х	MNA	MNA	MNA	MNA	MNA	MNA	Х	Х	Х	х	X

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

	Production stage	Construc	tion stage	Use stage	End-of-li	fe stage				
Parameter	A1-3	A4	A5	B1	C2	C4	D			
Global warming potential (GWP) kg CO ₂ eqv	6.6E-01	1.0E-01	1.1E-01	0	1.8E-03	7.7E-03	-2.6E-02			
The global warming potential of a gas r	efers to the total contribution	on to global warming resulti	ng from the emission of one value of 1.	e unit of that ga	as relative to one unit of the	e reference gas, carbon dio	xide, which is assigned a			
Ozone depletion potential (ODP) kg CFC11 eqv	1.5E-09	1.7E-17	1.6E-10	0	1.3E-16	7.1E-15	-1.5E-15			
	Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.									
Acidification potential (AP) kg SO2 eqv	2.6E-03	8.2E-05	5.7E-05	0	1.9E-06	4.9E-05	-8.7E-05			
Acid depositions have negative impacts	on natural ecosystems and		nt incl, buildings. The main city production, heating and		missions of acidifying substa	ances are agriculture and f	ossil fuel combustion used			
Eutrophication potential (EP) kg PO43- eqv	5.3E-04	1.7E-05	2.0E-05	0	4.4E-07	5.6E-06	-1.2E-05			
	Excessive enrichm	nent of waters and continen	tal surfaces with nutrients,	and the associ	iated adverse biological effo	ects.				
Photochemical ozone creation (POCP) kg Ethene eqv	1.5E-04	-3.5E-07	5.5E-06	5.6E-11	-2.1E-07	3.7E-06	-9.9E-06			
Chemical reactions brought abou	Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.									
Abiotic depletion potential for non-fossil resources (ADP-elements) kg Sb eqv	6.2E-07	8.6E-09	2.1E-09	0	1.5E-10	2.9E-09	-5.8E-09			
Abiotic depletion potential for fossil resources (ADP-fossils) MJ	8.1E+00	1.4E+00	1.9E-01	0	2.5E-02	1.1E-01	-6.5E-01			
Consumption of non-renewable resources, thereby lowering their availability for future generations.										

Resource use

	Production stage	Construction stage		Use stage	End-of-life stage		
Parameter	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials MJ/FU	2.5E+00	7.9E-01	9.8E-01	0	1.4E-03	1.4E-02	-3.6E-01
Use of renewable primary energy resources used as raw materials MJ/FU	1.2E+00	0.0E+00	-9.0E-01	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources MJ/FU	3.7E+00	8.0E-02	7.0E-02	0	1.4E-03	1.4E-02	-3.6E-01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials MJ/FU	7.2E+00	1.4E+00	2.0E-01	0	2.5E-02	1.1E-01	-6.7E-01
Use of non-renewable primary energy resources used as raw materials MJ/FU	1.5E+00	0.0E+00	-3.5E-03	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	8.8E+00	1.4E+00	2.0E-01	0	2.5E-02	1.1E-01	-6.7E-01
Use of secondary materials kg/FU	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels MJ/FU	*	*	*	*	*	*	*
Use of non-renewable secondary fuels MJ/FU	*	L.*	*	*	*	*	*
Net use of fresh water m ³ /FU	3.2E-03	9.3E-05	2.6E-04	0	1.5E-06	2.8E-05	-2.4E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

	Production stage	Construction stage		Use Stage	End-of-life stage		
Parameter	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed kg	9.6E-07	6.6E-08	4.4E-09	0	2.2E-09	3.5E-09	-1.2E-09
Non-hazardous waste disposed kg	5.8E-02	2.2E-04	1.5E-02	0	4.0E-06	5.6E-01	-1.7E-03
Radioactive waste disposed* kg	2.3E-04	1.8E-06	4.4E-06	0	3.1E-08	1.3E-06	-9.5E-07

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

	Production stage	oduction stage Construction stage		Use Stage	End-of-l	ife stage	
Parameter	A1-3	A4	A5	B1	C2	C4	D
Component for re-use kg	1.46E-07	n/a	4.35E-09	n/a	n/a	n/a	n/a
Materials for recycling kg	2.57E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery kg	2.95E-05	n/a	n/a	n/a	n/a	n/a	n/a
Exported energy MJ	n/a	n/a	n/a	n/a	n/a	n/a	n/a