

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

ROCKLAP H&V Section

The results are for: 1 linear metre of product, with a thickness of 40 mm. Inner diameter of pipe section: 65 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Constr instal sta	lation		Use stage					End-of-life stage				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4
Х	Х	Х	Х	х	х	MNA	MNA	MNA	MNA	MNA	MNA	Х	Х	х	х

	еп	ent							
_	nd I		-						
-									
	bey								
	e sy								
bo	oun	dar	ıe						
	•	2							
Rense-	Recovery-	Recycling-	potential						
D									
	х								

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Global warming	kg CO ₂ eqv	1.7E+00	3.0E-01	3.1E-01	0	5.2E-03	2.2E-02	-7.5E-02
The global warming p unit of that			al contribution to ference gas, carbo	•	~	•		
	ozone is caused	by the breakdov	4.9E-17 In shields the earth wn of certain chlo then they reach the molecules.	rine and/or bro	mine co	ntaining comp	ounds	-4.2E-15
Acidification Acid depositions hav sources for emission		bstances are ag	•	il fuel combust				-2.5E-04
Eutrophication Excessive enrichme	kg PO ₄ ³⁻ eqv	1.5E-03	4.8E-05	5.9E-05	0 ociated a	1.1E-06	1.6E-05 ical effects.	-3.5E-05
Photochemical ozone creation Chemical reactions by		0 0,	-1.0E-06 of the sun. The re	`	•	•	1.0E-05 arbons in the	-2.9E-05
Depletion abiotic resources -elements	kg Sb eqv	1.2E-06	2.5E-08	6.2E-09	0	4.3E-10	8.3E-09	-1.7E-08
Depletion abiotic resources fuels	MJ	2.0E+01	4.1E+00	5.4E-01	0	7.1E-02	3.1E-01	-1.9E+00
Consumpt	ion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generation	ns.	

ROCKWOOL

Resource use

ixesource use								
Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	6.4E+00	2.3E+00	2.8E+00	0	4.0E-03	4.1E-02	-1.0E+00
Use of renewable primary energy resources used as raw materials	MJ	3.4E+00	0.0E+00	-2.6E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	9.8E+00	2.3E-01	2.0E-01	0	4.0E-03	4.1E-02	-1.0E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	1.8E+01	4.1E+00	5.9E-01	0	7.1E-02	3.2E-01	-1.9E+00
Use of non-renewable primary energy resources used as raw materials	MJ	3.4E+00	0.0E+00	-1.0E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	2.1E+01	4.1E+00	5.8E-01	0	7.1E-02	3.2E-01	-1.9E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m ³	7.4E-03	2.7E-04	7.5E-04	0	4.5E-06	7.9E-05	-6.8E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A 4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	1.7E-06	1.9E-07	1.3E-08	0	5.0E-09	7.6E-09	-3.4E-09
Non-hazardous waste disposed	kg	1.3E-01	6.3E-04	4.5E-02	0	1.1E-05	1.6E+00	-5.0E-03
Radioactive waste disposed*	kg	4.0E-04	5.1E-06	1.3E-05	0	8.8E-08	3.6E-06	-2.7E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	4.23E-07	n/a	1.26E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	7.46E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	8.55E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

