

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

ROCKLAP H&V Section

The results are for: 1 linear metre of product, with a thickness of 25 mm. Inner diameter of pipe section: 114 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Constr instal sta	lation		Use stage						End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Х	Х	Х	Х	х	Х	MNA	MNA	MNA	MNA	MNA	MNA	Х	Х	Х	Х

Г	еп	еш	5					
aı	nd I	oad	sk					
ŀ	oev	ono	t					
	•	/ste						
		dar						
00	Juli	uai	ıc					
	·							
Reuse-	Recovery-	Recycling-	potential					
D								
)	Κ						

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Global warming	kg CO ₂ eqv	1.7E+00	2.5E-01	2.5E-01	0	4.7E-03	2.0E-02	-6.2E-02
The global warming punit of that	· ·		al contribution to ference gas, carbo	•	~	•		
	ozone is caused	by the breakdov	4.1E-17 h shields the earth wn of certain chloi hen they reach the molecules.	rine and/or bro	omine co	ntaining comp	ounds	-3.5E-15
Acidification Acid depositions have sources for emission		ıbstances are ag		il fuel combust				-2.1E-04
Eutrophication Excessive enrichment	kg PO ₄ 3- eqv	1.3E-03 continental sur	4.0E-05	4.8E-05 ats, and the ass	0 ociated a	1.4E-06 adverse biologi	1.5E-05 ical effects.	-2.9E-05
Photochemical ozone creation Chemical reactions b	,	0 0,	-8.4E-07 of the sun. The re		•	•	9.7E-06 arbons in the	-2.4E-05
Depletion abiotic resources -elements	kg Sb eqv	1.1E-05	2.1E-08	5.1E-09	0	3.7E-10	7.6E-09	-1.4E-08
Depletion abiotic resources fuels	MJ	2.1E+01	3.4E+00 thereby lowering	4.5E-01	0	6.4E-02	2.8E-01	-1.6E+00

Resource use

rresource use								
Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	6.0E+00	1.9E+00	2.3E+00	0	3.8E-03	3.6E-02	-8.6E-01
Use of renewable primary energy resources used as raw materials	MJ	2.8E+00	0.0E+00	-2.2E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	8.9E+00	1.9E-01	1.7E-01	0	3.8E-03	3.6E-02	-8.6E-01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	2.0E+01	3.4E+00	4.9E-01	0	6.4E-02	2.9E-01	-1.6E+00
Use of non-renewable primary energy resources used as raw materials	MJ	3.2E+00	0.0E+00	-8.5E-03	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	2.3E+01	3.4E+00	4.8E-01	0	6.4E-02	2.9E-01	-1.6E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	<u></u> *	*
Net use of fresh water	m^3	8.3E-03	2.2E-04	6.2E-04	0	3.7E-06	7.0E-05	-5.6E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	3.3E-06	1.6E-07	1.0E-08	0	8.8E-09	1.4E-08	-2.8E-09
Non-hazardous waste disposed	kg	1.4E-01	5.2E-04	3.7E-02	0	1.1E-05	1.4E+00	-4.1E-03
Radioactive waste disposed*	kg	5.8E-04	4.2E-06	1.1E-05	0	8.0E-08	3.4E-06	-2.3E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A 5	B1	C2	C4	D
Component for re-use	kg	3.50E-07	n/a	1.04E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	6.17E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	7.07E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

