

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

ROCKLAP H&V Section

The results are for: 1 linear metre of product, with a thickness of 30 mm. Inner diameter of pipe section: 15.7 mm

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

			•				`								,
Pro	duct st	age	Constr instal sta			Use stage						End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Х	Х	х	х	Х	х	MNA	MNA	MNA	MNA	MNA	MNA	х	х	х	Х

_	Denenis									
		oad								
		ono								
the	e sy	yste	m							
bo	oun	dar	ie							
		2								
Rense-	Recovery-	Recycling-	potential							
D										
	х									

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D	
Global warming	kg CO ₂ eqv	6.0E-01	9.8E-02	1.0E-01	0	1.7E-03	7.2E-03	-2.4E-02	
The global warming p unit of that	_		tal contribution to ference gas, carbo	•	ŭ	•			
	ozone is caused	by the breakdo	1.6E-17 h shields the earth wn of certain chlo hen they reach th molecules.	rine and/or bro	omine co	ntaining comp	ounds	-1.4E-15	
Acidification Acid depositions have sources for emission		bstances are ag	•	il fuel combust				-8.2E-05	
Eutrophication	kg PO ₄ ³⁻ eqv	5.0E-04	1.6E-05	1.9E-05	0	4.0E-07	5.2E-06	-1.1E-05	
Excessive enrichme	ent of waters and	continental sur	faces with nutrien	its, and the ass	ociated a	dverse biolog	ical effects.		
Photochemical ozone creation	kg Ethene eqv	1.3E-04	-3.3E-07	5.2E-06	5.3E-11	-1.8E-07	3.5E-06	-9.3E-06	
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.									
Depletion abiotic resources -elements	kg Sb eqv	5.3E-07	8.2E-09	2.0E-09	0	1.4E-10	2.8E-09	-5.5E-09	
Depletion abiotic resources fuels	MJ	7.4E+00	1.3E+00	1.8E-01	0	2.4E-02	1.0E-01	-6.1E-01	
Consumption of non-renewable resources, thereby lowering their availability for future generations.									

ROCKWOOL

Resource use

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	2.3E+00	7.5E-01	9.2E-01	0	1.3E-03	1.4E-02	-3.4E-01
Use of renewable primary energy resources used as raw materials	MJ	1.1E+00	0.0E+00	-8.5E-01	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	3.4E+00	7.5E-02	6.6E-02	0	1.3E-03	1.4E-02	-3.4E-01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	6.5E+00	1.3E+00	1.9E-01	0	2.4E-02	1.0E-01	-6.4E-01
Use of non-renewable primary energy resources used as raw materials	MJ	1.4E+00	0.0E+00	-3.3E-03	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	7.9E+00	1.3E+00	1.9E-01	0	2.4E-02	1.0E-01	-6.4E-01
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m ³	2.9E-03	8.8E-05	2.4E-04	0	1.5E-06	2.6E-05	-2.2E-04

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	8.0E-07	6.2E-08	4.1E-09	0	2.0E-09	3.1E-09	-1.1E-09
Non-hazardous waste disposed	kg	5.1E-02	2.1E-04	1.5E-02	0	3.7E-06	5.2E-01	-1.6E-03
Radioactive waste disposed*	kg	1.9E-04	1.7E-06	4.2E-06	0	2.9E-08	1.2E-06	-9.0E-07

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.

Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	1.38E-07	n/a	4.11E-09	n/a	n/a	n/a	n/a
Materials for recycling	kg	2.43E-02	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	2.79E-05	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

