

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

RW5

The results are for: 1 m2 of product,

with a thickness of

50 mm.

Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

Pro	duct st	age	Constr instal sta	lation		Use stage						End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4
Х	Х	Х	Х	х	x MNA MNA MNA MNA MNA MNA						Х	Х	х	х	

_		ent	-						
aı	nd I	oad	ds						
		ond							
th	e sy	/ste	m						
		dar							
		2							
Rense-	Recovery-	Recycling-	potential						
D									
	х								

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D	
Global warming	kg CO ₂ eqv	4.3E+00	9.5E-01	9.7E-01	0	1.6E-02	6.6E-02	-2.4E-01	
The global warming p unit of that	•		al contribution to ference gas, carbo	•	_	· ·			
	ozone is caused	by the breakdov	1.6E-16 h shields the eartl wn of certain chlo hen they reach th molecules.	rine and/or bro	mine co	ntaining comp	ounds	-1.3E-14	
Acidification Acid depositions hav sources for emission		ıbstances are ag	•	il fuel combust			•	-8.0E-04	
Eutrophication	kg PO ₄ ³⁻ eqv	4.4E-03	1.5E-04	1.8E-04	0	2.9E-06	4.8E-05	-1.1E-04	
Excessive enrichme	ent of waters and	continental sur	faces with nutrier	nts, and the ass	ociated a	dverse biolog	ical effects.		
Photochemical ozone creation	kg Ethene eqv	9.1E-04	-3.2E-06	5.0E-05	5.2E-10	-5.3E-07	3.2E-05	-9.0E-05	
Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.									
Depletion abiotic resources -elements	kg Sb eqv	1.8E-06	7.9E-08	2.0E-08	0	1.3E-09	2.5E-08	-5.3E-08	
Depletion abiotic resources fuels	MJ	5.1E+01	1.3E+01	1.7E+00	0	2.2E-01	9.4E-01	-5.9E+00	
Consumpt	ion of non-renew	able resources,	thereby lowering	their availabili	ty for fut	ure generation	ns.		

ROCKWOOL

Resource use

resource use								
Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	1.7E+01	7.2E+00	8.9E+00	0	1.2E-02	1.3E-01	-3.3E+00
Use of renewable primary energy resources used as raw materials	MJ	1.1E+01	0.0E+00	-8.3E+00	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	2.8E+01	7.3E-01	6.4E-01	0	1.2E-02	1.3E-01	-3.3E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	4.5E+01	1.3E+01	1.9E+00	0	2.2E-01	9.7E-01	-6.1E+00
Use of non-renewable primary energy resources used as raw materials	MJ	6.9E+00	0.0E+00	-3.2E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	5.2E+01	1.3E+01	1.8E+00	0	2.2E-01	9.7E-01	-6.1E+00
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	*	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	<u>-</u> -*	*	*	*	*	*
Net use of fresh water	m ³	1.6E-02	8.5E-04	2.4E-03	0	1.4E-05	2.4E-04	-2.2E-03

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

Parameter	Unit	A1-3	A 4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	1.3E-06	6.0E-07	4.0E-08	0	1.0E-08	1.5E-08	-1.1E-08
Non-hazardous waste disposed	kg	2.4E-01	2.0E-03	1.4E-01	0	3.3E-05	4.9E+00	-1.6E-02
Radioactive waste disposed*	kg	2.7E-04	1.6E-05	4.0E-05	0	2.7E-07	1.1E-05	-8.7E-06

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.


Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	1.34E-06	n/a	3.98E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	2.36E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	2.70E-04	n/a	n/a	n/a	n/a	n/a	n/a

Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

