

THE GREEN YARDSTICK

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN 15804 and ISO 14025

Ecophon ExtraBass[™]

Programme: The International EPD® System, www.environdec.com Programme operator: EPD International AB Version: 1.0 Registration number: S-P-03230

Date of publication (issue): 2021-03-05 Date of revision: 2022-03-07 Date of validity: 2026-03-05 In accordance with ISO 14025, ISO 21930 and EN 15804

Summary Environmental product declaration

Content summary	
Verified by (external third-party verifier)	Martin Erlandsson, IVL Swedish Environmental Research Institute
Programme used	The International EPD System. For more information see www.environdec.com
Registration No	S-P-03230
Owners declaration by	Saint-Gobain Ecophon AB Box 500 265 03 Hyllinge Sweden
Declaration as construction products	The products to be verified herein are acoustic glass wool panels made for sound absorbing ceilings. The present environmental product declaration complies with standard ISO 14025 and describes the environmental impact. Its purpose is to promote compatible and sustainable environmental development of related construction methods. Reference PCR document: EN 15804 as the core PCR + International EPD System Product Category Rules - PCR for constructions products and construction services, Acoustical systems solutions (sub-oriented PCR; appendix to PCR 2012:01) - previously Acoustic ceilings. EPD of construction products may not be comparable if they do not comply with EN 15804.
Validity	2026-03-05
Content of the declaration	This is an environmental product declaration containing environmental information of the product in the Ecophon family ExtraBass. The values presented in this EPD are represented for the following products: ExtraBass Supplemental product information can be found at www.ecophon.com
UN CPC (Central Product Classification) CODE	37990 37129
Issued date	2021-03-05

Product responsible:

Huend

Thomas Roul Product Engineering & Development Manager Saint-Gobain Ecophon AB

Independent third party verifier:

V HEAN CRANISSON

Martin Erlandsson LCA Business Development Manager IVL

Product description

Product description and description of use:

This Environmental Product Declaration (EPD) describes the environmental impact of 1m² of acoustic ceiling with the intended use to increase sound absorption in a room to create a better indoor environment.

This Environmental Product Declaration (EPD) are valid for products produced in Ecophon production plants in Sweden, Denmark, Poland and Finland with a high-quality glass wool in different densities and thicknesses. The glass wool is covered with a painted or woven surface layer and cut into panels of different sizes and edge designs. The edges are painted and the panels are packed in cardboard boxes.

The structure of glass wool gives the material excellent sound energy absorption properties. Sound absorption is the main function of acoustic glass wool panels. The panels are also light, stable, and easy to handle and cut.

Acoustic glass wool panels are commonly used in schools, offices, health care facilities and production premises where there is a need for noise reduction to improve the working environment. The decrease in reverberation time, sound pressure level and other acoustic parameters are related to the amount of panels used in the room as well as the placement of the panels. The acoustic panels need no maintenance and do not age. They can last as long as the building itself. For aesthetic reasons, normal room surface cleaning is advised.

Description of the main product components and materials for 1 m² of product:

Parameter	Value (Weight in %)	Post-consumer recycled content
Product thickness	40 mm	
Glass wool	93%-96%	70%
Waterborne paint	0	•
Glass tissue	0	
Waterborne glue	0	•
Plastic wrapping	60 g	•

T otal weigh	ts
	ExtraBa
Product	SS
Total weight [kg]	1,4

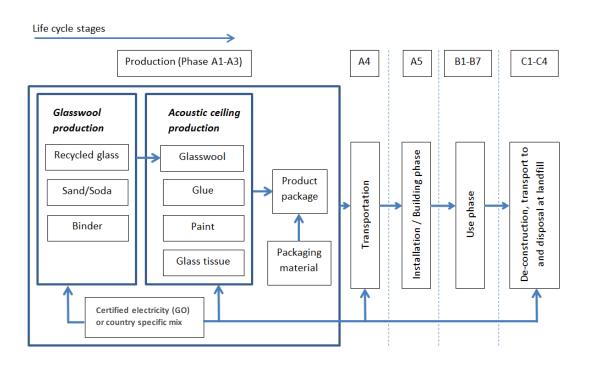
All raw materials contributing more than 5% to any environmental impact are listed in the table above. The panels are free from substances of very high concern (SVHC). The product contains no substances from the REACH Candidate list (of 15.06.2018).

If there in future occur production changes that generate an increased impact larger than 10% the EPD will be updated and re-verified

Other environmental indicators

Regarding the indoor environment, the ExtraBass products are certified for or fulfil regulations according to the following table:

Certificate and Regulations	
Finnish M1	
Eurofins Indoor Air Comfort	


LCA calculation information

Declared unit	1 m² of acoustic celling panel.
Functional unit	1 m ² acoustic ceiling with sound absorption class A installed at an ODS of 200mm according to ISO 354.
System boundaries	Cradle to grave: Mandatory stages = A1-3, A4-5, B1-7, C1-4 and optional stage = D This EPD covers the environmental impact of acoustic panels without grid or suspension system.
Reference Service Life (RSL)	50 years
Cut-off rules	The use of cut-off criterion on mass inputs and primary energy at the unit process level (1%) and at the information module level (5%). Flows related to human activities such as employee transport are excluded. Biogenic carbon has not been included in calculations. The construction of plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the production of the building product when compared at these systems lifetime level.
Allocations	Allocation criteria are based on mass.
Geographical coverage and time period	For A1-A3: Global For A4 : European covering (2019)

According to EN 15804, EPD of construction products might not be comparable if they do not comply with this standard. According to ISO 21930, EPD's might not be comparable if they are from different EPD administrating schemes.

Life Cycle stages

Flow diagram of the Life Cycle

Product stage, A1-A3

Description of the stage:

The product stage of the glass wool products is divided into 3 modules: A1 "Raw material and supply", A2 "Transport to the manufacturer" and A3 "Manufacturer". The aggregation of the modules A1, A2 and A3 is a possibility considered by the EN 15 804 standard. This rule is applied in this EPD.

A1 Raw material supply

This module takes into account the extraction and processing of all raw materials and energy which occur upstream to the studied manufacturing process.

Specifically, the glass wool raw material supply covers production of the binder components and sourcing (quarry) of raw materials for fiber production, e.g. sand and borax. Besides these raw materials, recycled materials (glass cullet) are also used as input. Other major raw materials are paint, glass tissue and glue which also are included in the calculation. All electricity is taken account for in (GOs) or at least country specific mix.

A2 Transport to the manufacturer

The raw materials are transported to the manufacturing site. In our case, the modelling includes: road, boat or train transportations (average values) of each raw material.

A3 Manufacturing

The manufacturing includes two steps; glass wool production and glass wool panel production. The glass wool panels are produced in a continuous online process starting with applying glass tissue on the glass wool baseboard. The panels are cut into correct size and the edges of the panels are painted. After drying the panels are packed in cardboard boxes.

Manufacturing covers all processes linked to production, which comprises various related operations besides on-site activities such as grinding, painting and drying, packaging and internal transportation. The manufacturing process also yields data on the combustion of refinery products, such as natural gas, diesel and gasoline, related to the production process.

The environmental profile of these energy carriers is modelled for local conditions. Packaging-related flows in the production process and all up-stream packaging are included in the manufacturing module, i.e. wooden pallets, cardboard and PE-film. Apart from production of packaging material, the supply and transport of packaging material are also considered in the LCA model. They are reported and allocated to the module where the packaging is applied. Data on packaging waste created during this step is then generated. It is assumed that packaging waste generated in the course of production and up-stream processes is 100% collected and either recycled or incinerated with energy recovery, related to material and quality, in ratios according to the local material handling companies.

The glass wool raw material is supplied from three different external locations to all four Ecophon production sites. A representative electricity mix for glass wool production in each country of origin was used. The finished product can be produced in any of Ecophon's four production sites, the split was calculated by mass allocation from production data for year 2019 for all sites involved.

Construction process stage, A4-A5

Description of the stage:

The construction process is divided into 2 modules: A4 "Transport to the building site" and A5 "Installation in the building.

Description of scenarios and additional technical information:

A4 Transport to the building site

This module includes transport from the production gate to the building site. Transport is calculated on the basis of a scenario with the parameters described in the following table.

Parameter	Value
Fuel type, consumption of fuel and vehicle or vehicle type used for transport	Average truck trailer with a 24t payload, diesel consumption 38 litres for 100 km
Distance	475 km (based on transports in 2019)
Capacity utilisation (including empty returns)	100% of the capacity in volume
Capacity utilisation (including empty lefutils)	30% of empty returns
Bulk density of transported products (if available)	54 - 98 kg/m³
Volume capacity utilisation factor (if available)]

The transport distance has been calculated from a European average transport for Ecophon in 2019 following the parameters in table above.

A5:1 Installation in the building

This module includes waste of products during the implementation, i.e. the additional production processes to compensate the loss and the waste processing which occur in this stage.

Parameter	Value
Waste of materials on the building site before waste processing, generated by the product's installation	5%
Output materials (specified by type) as results of waste processing at the building site e.g. of collection for recycling,	Packaging waste is 100 % collected and modelled as recovered matter
for energy recovering, disposal	Ceiling panel losses are landfilled

Scenarios used for quantity of product wastage and waste processing are:

A5:2 Energy usage

As a general figure the time to install $1m^2$ ceiling is considered to be 20 minutes. During this time the installer is considered to use handheld appliances for about 5% of this time which in this case results in 1 minute. A handheld device such as a cordless screwdriver is considered to have a power of 0.7 kilowatt. Therefore, in one minute it will consume a total energy of 0.7*60 = 4.2 kilojoule = 0.0042 MJ, per m² ceiling. In this context it is a negligible contribution and will not be part of the LCA calculation (lower than 0.1% of the total energy consumption).

Use stage (excluding potential savings), B1-B7

Description of the stage:

The use stage is divided into 7 modules, B1 "Use", B2 "Maintenance", B3 "Repair", B4 "Replacement", B5 "Refurbishment", B6 "Operational energy use", B7 "Operational water use"

Description of scenarios and additional technical information:

Once installation is complete, no actions or technical operations are required during the use stages until the end of life stage. Therefore, glass wool ceiling panels have no impact (excluding potential energy savings) on this stage.

End-of-life stage C1-C4

Description of the stage:

The end-of life stage is divided into 4 modules; C1 "De-construction, demolition", C2 "Transport to waste processing", C3 "Waste processing for reuse, recovery and/or recycling", C4 "Disposal".

Description of scenarios and additional technical information:

C1, De-construction, demolition

The de-construction and/or dismantling of glass wool ceiling panels take part during the renovation of the building or the demolition of the entire building. In our case, the environmental impact is assumed to be very small and can be neglected.

C2, Transport to waste processing

The model for transportation (see A4, Transportation to the building site) is applied.

C3, Waste processing for reuse, recovery and/or recycling;

The product is considered to be landfilled without reuse, recovery or recycling.

C4, Disposal;

The product is assumed to be 100% landfilled.

Parameter	Value/description
Collection process specified by type	1440-2410g of acoustic ceiling (collected with mixed construction waste)
Recovery system specified by type	No reuse, recycling or energy recovery
Disposal specified by type	1080 - 1960g of acoustic ceiling is landfilled
Assumptions for scenario development (e.g. transportation)	Average truck trailer with a 24t payload, diesel consumption 38 litres for 100 km 200 km (distance to landfill)

Reuse/recovery/recycling potential, D

Description of scenarios and additional technical information:

Packaging waste from module A5 is reported in this module as recovered matter.

LCA results

LCA model, aggregation of data and environmental impact are calculated from the GABI SP40 software – mostly Ecoinvent 3.6 datasets and some Gabi datasets.

Raw materials and energy consumption, as well as transport distances have been taken directly from the manufacturing plant of Saint-Gobain Ecophon in 2019.

Summary of the LCA results are detailed in the tables below.

All results in the EPD are written in logarithmic base of ten. Reading example: $5.2E \cdot 0.03 = 5.2 \times 10^3 = 0,0052$.

MND (module not declared), is equal to MNA (module not assessed).

Modules declared, geographical scope, and share of specific data (in GWP indicator) are stated in the following table. For stages A1-A3 (largest contribution to total GWP), the raw materials are modelled with very low amount of generic data – over 90% of the GWP comes from specific data.

	Product phase				Construction process phase			Use phase End of life phase				Use phase End of life phase			Use phase End of life phase			Resou rce recov ery phase
	Raw material and supply	Transport to the manufacturer	Manufacturing	Transport to the building site	Installation in the building	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport to waste processing	Waste processing	Disposal	 Reuse-Recovery-Recycling-potential	
Module	Al	A2	A3	A4	A5	B1	B2	Β3	B4	B5	B6	B7	C1	C2	C3	C4	D	
Modules declared	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	MND	
Geography	SE, NL, FR, DK, PL, DE, FI, GB, EU, GLO	SE, NL, FR, DK, PL, DE, FI, GB, EU, GLO	SE, DK, PL, FI	GB, EU, GLO	EU, GLO								GB, EU, GLO	GB, EU, GLO	GB, EU, GLO	GB, EU, GLO	-	
Specific data		> 90%	-							-	-			•		-	-	

Environmental impact.

	Environmental ir	npacts	·
Paran			ExtraBass
гагап	leters		
		A 1-A 3	1,41E+00
		A4-A5	1,80E-01
		B 1-B 7	0,00E+00
		C1-C4	2,90E-02
$\mathbf{\overline{\mathbf{D}}}$		D	NDA
<u> </u>	Global Warming Potential (GWP) -		1,62E+00
	kg CO ₂ equiv /FU	T ot al A-C	
			The global warming potential of a gas
			refers to the total
			contribution to globa
			warming resulting fro
			the emission of one
			unit of that are relativ
		A1-A3	1,65E-07
		A 4-A 5	8,56E-09
		B1-B7	0,00E+00
		C1-C4	1,12E-16
S	Ozone Depletion (ODP) kg CF C 11	D	NDA
	equiv/FU	Total A-C	1,74E-07
			Destruction of the
			stratospheric ozone
			layer which shields t
			earth from ultraviole
			radiation harmful to life. This destruction
		A1-A3	Tite. I his destruction 7,56E-03
		A 4-A 5	4,79E-04
		B 1-B 7	0,00E+00
		C1-C4	1,31E-04
(5)		D	NDA
<u> </u>	Acidification potential (AP) kg SO ₂	Total A-C	8,17E-03
	equiv/FU	T OIGI A-C	A cid depositions ha
			negative impacts or
			natural ecosystems
			and the man-made
			environment incl,
			buildings. The main
		A1-A3	2,72E-03
			2,72E-03
		A 4-A 5	2,72E-03 2,83E-04
		A 4-A 5 B 1-B 7	2,72E-03 2,83E-04 0,00E+00
		A 4-A 5 B 1-B 7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05
	Eutrophication potentia (EP) kg	A 4-A 5 B 1-B 7	2,72E-03 2,83E-04 0,00E+00
	Eutrophication potential (EP) kg (POJ) ^{2,} equiv,∉U	A 4-A 5 B 1-B 7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05
		A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 ND A 3,02E-03 Excessive enrichmer
		A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and
*		A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent surfaces
		A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surface with nutrients, and t
		A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surface with nutrients, and 11 associated adverse
.		A4-A5 B1-B7 C1-C4 D T ot d A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and 11 associated adverse biolocia d effects.
		A4-A5 B1-B7 C1-C4 D Total A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and 1 associated adverse biological effects. 7,73E-04
&		A4-A5 B1-B7 C1-C4 D T ot d A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and 1 associated adverse biolocia effects.
		A4-A5 B1-B7 C1-C4 D Total A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and 1 associated adverse biological effects. 7,73E-04
		A4-A5 B1-B7 C1-C4 D T otd A-C A1-A3 A4-A5	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and 1 associated adverse biological effects. 7,73E-04 8,01E-05
		A4-A5 B1-B7 C1-C4 D T otol A-C A1-A3 A4-A5 B1-B7	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and t associated adverse biolocia effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06
	(PO _d) ³ · equiv,FU	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with autriates, and 1 associated adverse biological effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA
	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D T otol A-C A1-A3 A4-A5 B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continental surface with nutrients, and 1 associated adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04
	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surface with nutrients, and 1 masocided adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions
 The second second	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and t associated adverse biological effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th
♦	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surface with nutrients, and t asociated adverse biological effects. 7,72E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su
 The second second	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmen of waters and continentd surface with nutrients, and 1 associated adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of
	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and I associated adverse bioload a effects. 7,72E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with
	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4 D	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and t associated adverse biolocic effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with
	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D T ord A-C A1-A3 A4-A5 B1-B7 C1-C4 D T ord A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmen of waters and continentd surface with nutrients, and 1 asociated adverse biological effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought doubt by th light energy of the su The reaction of nitrogen oxides with hydrocarbons in th
	(PO _d) ³ · equiv,∉U Photochemical azone creation	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 D Tord A-C D Tord A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surfaces with nutrients, and 1 associated adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with hy drocarbons in the 1,88E-06 1,01E-07
	(PO ₄) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU	A4-A5 B1-B7 C1-C4 D T ord A-C A1-A3 A4-A5 D T ord A-C D T ord A-C A1-A3 A4-A5 B1-B7	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surfaces with nutrients, and 1 associated adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with hy drocorbons in the 1,88E-06 1,01E-07 0,00E+00
	(PO ₄) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 A1-A3 A4-A5 B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surfaces with nutrients, and 1 associated adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su T he reaction of nitrogen oxides with hy drocarbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09
	(PO _d) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D T ord A-C A1-A3 A4-A5 D T ord A-C D T ord A-C A1-A3 A4-A5 B1-B7	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surfaces with nutrients, and 1 associated adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with hy drocorbons in the 1,88E-06 1,01E-07 0,00E+00
	(PO _d) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 A1-A3 A4-A5 B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surfaces with nutrients, and 1 associated adverse biolocical effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su T he reaction of nitrogen oxides with hy drocarbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09
	(PO _d) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C S B1-B7 C1-C4 D Totd A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and I associated adverse bioload a (effects, 7,72E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su T he reaction of nitrogen oxides with hydrocarbons in the 1,88E-06 NDA 1,98E-06
	(PO _d) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and fl associated adverse biolocia diffects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides will hy droarbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01
	(PO _d) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4 B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with autrients, and t associated adverse biological effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions of brought about by th light energy of the su T he reaction of nitrogen oxides with NBE-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00
	(PO _d) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and t associated adverse biolocia effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of the su The reaction of the su The reactions in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01
	(PO ₄) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg Sb equiv,FU	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4 B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with autrients, and t associated adverse biological effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions of brought about by th light energy of the su T he reaction of nitrogen oxides with NBE-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00
	(PO _d) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Tod A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tod A-C A-C4 B1-B7 C1-C4 D Tod A-C A-C3 A4-A5 B1-B7	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continental surfaces biological effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought doubt by th light energy of the su The reaction of nitrogen oxides with hydroactbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00 0,00E+00
	(PO ₄) ³ . equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg Sb equiv,FU Abiotic depletion potential for fossil	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surfaces with nutrients, and It associated adverse biolocial effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with hydrocarbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00 0,00E+00 3,86E-01 NDA
	(PO ₄) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg Sb equiv,FU Abiotic depletion potential for fossil resources (ADP-fossil fuels) -	A4-A5 B1-B7 C1-C4 D Tod A-C A1-A3 A4-A5 B1-B7 C1-C4 A1-A3 A4-A5 B1-B7 C1-C4 D Tod A-C A1-A3 A4-A5 B1-B7 C1-C4	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continental surfaces with nutrients, and I associated adverse biological effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought doubt by th light energy of the su The reaction of nitrogen oxides with hydroactbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00 0,00E+00 3,86E-01
	(PO ₄) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg Sb equiv,FU Abiotic depletion potential for fossil resources (ADP-fossil fuels) -	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surfaces with nutrients, and 11 associated adverse biolocial effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with hydrocarbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00 0,00E+00 3,86E-01 NDA 2,32E+01 Consumption of nor
	(PO ₄) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg Sb equiv,FU Abiotic depletion potential for fossil resources (ADP-fossil fuels) -	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continent d surface with nutrients, and fl associated adverse biolocia diffects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen acides will hydroarbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00 0,00E+00 3,86E-01 NDA 2,32E+01 Consumption of nor reaewable resources
	(PO ₄) ³ , equiv,FU Photochemical azone creation (POPC) kgEthene equiv,FU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg Sb equiv,FU Abiotic depletion potential for fossil resources (ADP-fossil fuels) -	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tord A-C	2,72E-03 2,83E-04 0,00E+00 1,58E-05 NDA 3,02E-03 Excessive enrichmer of waters and continentd surfaces with nutrients, and 11 associated adverse biolocial effects. 7,73E-04 8,01E-05 0,00E+00 6,34E-06 NDA 8,59E-04 Chemical reactions brought about by th light energy of the su The reaction of nitrogen oxides with hydrocarbons in the 1,88E-06 1,01E-07 0,00E+00 2,33E-09 NDA 1,98E-06 2,15E+01 1,31E+00 0,00E+00 3,86E-01 NDA 2,32E+01 Consumption of nor

	Environmental in	npacts	
Paran	neters		ExtraBass
		A1-A3	1,59E+01
_	Use of renewable primary energy	A1-A3 A4-A5	1,39E+01
>*	excluding renewable primary energy	A4-A5 B1-B7	0.00E+00
1	resources used as raw materials - MJ		
	/F U	C1-C4	4,08E-02
		D	NDA
		Total A-C	1,72E+01
		A 1-A 3	1,93E-01
*	Use of renewable primary energy	A4-A5	9,66E-03
か	used as raw materials - MJ /FU	B 1-B 7	0,00E+00
_		C1-C4	0,00E+00
		D	NDA
		T ot al A-C	2,03E-01
		A1-A3	1,61E+01
	T otal use of renewable primary	A4-A5	1,30E+00
	energy resources (primary energy	B1-B7	0,00E+00
	and primary energy resources used	C1-C4	4,08E-02
	as raw materials) - MJ /FU	D	NDA
		T ot al A-C	1,74E+01
			ExtraBass
		A1-A3	2,29E+01
		A4-A5	1,35E+00
	U se of non-renewable primary	B1-B7	0,00E+00
	energy excluding non-renewable primary energy resources used as	B1-B7 C1-C4	0,00E+00 3,95E-01
	raw materials - MJ /FU	D	
		D Total A-C	NDA
			2,47E+01
		A1-A3	9,61E-01
-	Use of non-renewable primary	A4-A5	4,80E-02
	energy used as raw materials - MJ / FU	B 1-B 7	0,00E+00
	FO	C1-C4	0,00E+00
		D	NDA
		T ot al A-C	1,01E+00
		A 1-A 3	2,39E+01
	T otal use of non-renewable primary	A4-A5	1,40E+00
	energy resources (primary energy	B 1-B 7	0,00E+00
	and primary energy resources used as raw materials) - MJ /FU	C1-C4	3,95E-01
		D	NDA
		Total A-C	2,57E+01
			E. (B
			ExtraBass
		A 1-A 3	6,91E-01
	Use of secondary material	A4-A5	3,46E-02
0	Kg/FU	B 1-B 7	0,00E+00
		C1-C4	0,00E+00
		D	NDA
		T ot al A-C	7,26E-01
			ExtraB ass
		A 1-A 3	0,00E+00
	Use of renewable secondary fuels	A 4-A 5	0,00E+00
\odot	MJ /FU	B 1-B 7	0,00E+00
		C1-C4	0,00E+00
		D	NDA
		Total A-C	0,00E+00
			ExtraB ass
		A 1-A 3	0,00E+00
	Use of non-renewable secondary	A4-A5	0,00E+00
O	fuels - MJ /FU	B1-B7	0,00E+00
		C1-C4	0,00E+00
		D	NDA
		T ot al A-C	0,00E+00
		. ordi A-C	
			ExtraB ass
		A1-A3	2,70E-02
	Use of net fresh water	A4-A5	1,46E-03
(<u>)</u>	m³/FU	B1-B7	0,00E+00
<u> </u>		51-07	
		C1.C4	7 05E 05
		C1-C4 D	7,05E-05 ND A

Waste categories

Environmenta	l impacts	
Parameters		ExtraB ass
	A 1-A 3	1,53E-08
	A 4-A 5	1,33E-09
Hazardous waste disposed	B 1-B 7	0,00E+00
kg/10	C1-C4	3,12E-11
	D	NDA
	T ot al A-C	1,67E-08
		ExtraB ass
	A 1-A 3	1,32E-01
Non-hazardous waste	A 4-A 5	1,32E-01
disposed - kg/FU	B 1-B 7	0,00E+00
	C1-C4	1,41E+00
	D	NDA
	T ot al A-C	1,67E+00
		ExtraBass
	A 1-A 3	6,86E-06
R adioactive waste disposed	A 4-A 5	- 1,09E-05
kg/FU	B 1-B 7	0,00E+00
	C1-C4	3,09E-06
	D	NDA

Output flow

Environmental impacts			
Parameters		ExtraB ass	
Components for re-use kg/FU	A 1-A 3	-	
	A 4-A 5	-	
	B 1-B 7	-	
	C1-C4	-	
	D	NDA	
	T ot al A - C	-	
M ateriads for recycling kg/F U		ExtraB ass	
	A 1-A 3	1,81E-02	
	A 4-A 5	8,95E-03	
	B 1-B 7	0,00E+00	
	C1-C4	0,00E+00	
	D	NDA	
	T ot al A - C	2,71E-02	
Materials for energy reovery - kg/FU		ExtraB ass	
	A 1-A 3	-	
	A 4-A 5	-	
	B 1-B 7	-	
	C1-C4	-	
	D	NDA	
	T ot al A-C	-	
	T otal A-C	ExtraB ass	
	T otal A-C A 1-A 3	ExtraB ass 0,00E+00	
Exported energy MJ/FU	A1-A3	0,00E+00	
Exported energy MJ/FU	A 1-A 3 A 4-A 5	0,00E+00 0,00E+00	
Exported energy MJ/FU	A 1-A 3 A 4-A 5 B 1-B 7	0,00E+00 0,00E+00 0,00E+00	

Summary

	E xtraB ass	
Global warming		
kg CO ₂ equiv/FU	1,62	
Non-renewable resources consumption [1]		
MJ/FU	23	
Energy consumption [2]		
MJ/FU	43	
Water consumption [3]		
m³/FU	0,03	
Waste production [4]		
kg/FU	1,67	

[1] This indicator corresponds to the abiotic depletion potential of fossil resources.

[2] This indicator corresponds to the total use of primary energy.

[3] This indicator corresponds to the use of net fresh water.

[4] This indicator corresponds to the sum of hazardous, non-hazardous and radioact

Reference list

ISO 354:2003: Acoustics - Measurement of sound absorption in a reverberation room

Finnish M1: Emission classification of building materials (M1 Classification): general instructions 12 November 2014

Eurofins Indoor Air Comfort: Eurofins Indoor Air Comfort GOLD and Indoor Air Comfort Version 7.0 May 2020

Reach: EU REACH Regulation (EC) No 1907/2006

LCA report: Project_report_on_Ecophon_LCA_2021-03-03

EN 15804:2012+A1:2013: Sustainability of construction works - Environmental product declarations -

Acoustical systems solutions (sub-oriented PCR; appendix to PCR 2012:01) - previously Acoustic ceilings.

PCR 2012:01 Construction products and construction services (version 2.32 dated 2020-07-01)

Difference from previous versions

New company logo and correction of few product weights on page 3.

CONTACT INFORMATION

LCA author and EPD owner

Saint-Gobain Ecophon AB Box 500 265 03 Hyllinge Sweden

Markus Beckman markus.beckman@ecophon.se

Programme operator

EPD International AB Box 210 60 100 31 Stockholm Sweden info@environdec.com