

Statement of Verification

BREG EN EPD No.: 000082

ECO EPD Ref. No. 000331 This is to verify that the

Environmental Product Declaration

provided by:

PolyFoam™ XPS Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

BRE Global Scheme Document SD207

This declaration is for:

POLYFOAM Extra XPS

Company Address

Hunter House Industrial Estate Hartlepool TS25 2BE

PolyFoam XPS

Operator

17 March 2016

Date of First Issue

Emma Baker 26 March 2021

Date of this Issue

25 March 2024

Issue 04

Expiry Date

BRE Global Verified

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.
T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000082

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013							
Commissioner of LCA study	LCA consultant/Tool							
Polyfoam XPS Ltd Hunter House Industrial Estate Tofts Road East Hartlepool TS25 2BE UK	Chris Foster EuGeos Limited 387 Park Lane Macclesfield SK11 8JR www.eugeos.co.uk							
Declared/Functional Unit	Applicability/Coverage							
1 cubic metre of Polyfoam Extra XPS	Product Average.							
EPD Type	Background database							
Cradle to Gate with options	ecoinvent							
Demonstra	ition of Verification							
CEN standard EN 15	5804 serves as the core PCR ^a							
Independent verification of the declara □Internal	ation and data according to EN ISO 14025:2010 ⊠ External							
(Where appropriate ^b)Third party verifier: Kim Allbury								
	Kim Allbury							

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

ı	Product		Const	ruction	Pal	Use stage Related to the building fabric Related to				ed to	End-of-life			Benefits and loads beyond the system		
										the building					boundary	
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\square	V	V											V		\square	

Note: Ticks indicate the Information Modules declared.

Manufacturing site

To Ha	unter House Industrial Estate Ifts Road East artlepool 625 2BE	Click here to enter address.
Uk	<	

Construction Product

Product Description

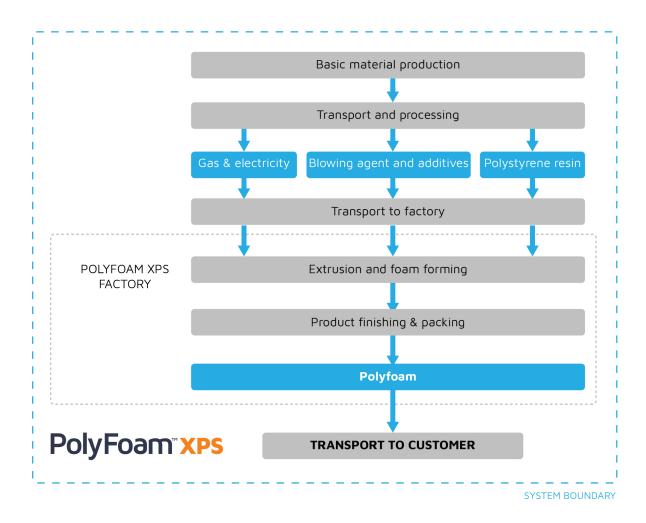
Extruded polystyrene (XPS) insulation boards sold under the names: Polyfoam Roofboard Extra; Polyfoam Floorboard Extra; Polyfoam Laminating Board Extra.

Technical Information

Property	Value, Unit
Thermal conductivity (EN 12667)	0.033 W/mK
Compressive strength	300 kPa
Water vapour resistivity (EN 12086)	625 MNs/gm
Fire Classification (in accordance with BS EN 13501-1:2002	F
Gross dry density	30 – 38 kg/m³
Continuous service temperature limits	Up to +70 °C

Main Product Contents

Material/Chemical Input	%
Polystyrene	> 95
Blowing agent	4.5 - 5
Colourants & process additives	< 0.5


EPD Number: 000082 BF1805-C-ECOP Rev 0.0

Manufacturing Process

The product is approximately 95% polystyrene; the remaining 5% comprises a gaseous "blowing agent" and minor additives such as colourant. In the manufacturing process, raw materials are mixed, heated and extruded in equipment that allows controlled formation of a continuous foam strip. Boards are cut from this. All production waste is recycled within the factory and returned to the process.

Process flow diagram

Construction Installation

The product is typically installed in situations where insulation with relatively high inherent mechanical strength, in particular compressive strength, and moisture resistance is needed, for example under floors or as part of panels or other laminated solutions. It can be cut to shape and no special tools are required for installation. In accordance with good industry practice the product should be stored away from heat, flames and other sources of ignition.

Use Information

Polyfoam XPS insulation is used for thermal insulation in buildings and other end use applications. The principal performance characteristic of thermal insulation is its thermal conductivity (lambda). Compressive strength is also a key property of XPS in many applications. The product is stable under normal temperature conditions and in recommended use; it does not require maintenance or replacement. In normal conditions of use, the product is not exposed to either internal or external environments. The product is non-hazardous in finished form.

End of Life

The product may be disposed of as a non-hazardous material, EWC Code 17-06-04. Being a polystyrene foam insulant, Polyfoam is 100% recyclable. The material does not degrade, therefore it can be either recycled or re-used when removed from the original installation.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1 cubic metre of Polyfoam Extra grade XPS insulation product. Results are presented for a product with density 34 kg/ m³. The average density of all production of this grade in the year covered by the producer-specific data.

System boundary

The system boundary of the EPD is defined using the modular approach set out in EN 15804. This cradle-to-gate with options EPD includes the product stage (A1-A3); transport to the construction site (A4); transport to waste processing (C2) and disposal at end-of-life (C4).

Data sources, quality and allocation

Following EN 15804, the most current available data was used to calculate the EPD. Specific foreground data derived from production information was used in the product-stage LCA for modules A1 - A3. The data covers a period of 1 year (Jan 01 to Dec 31, 2014). The producer-specific data used for calculations is therefore based on 1 year averaged data and has been updated within the last 5 years. Other (generic) data sets used for calculations have been updated within the last 10 years. The site data has been checked to ensure that sufficient materials and water are included within the inputs to account for all outputs, including products, wastes and material-derived emissions. Background data for minor raw materials, water and fuels/energy carriers was taken from the ecoinvent v 3.1 database. To comply with the requirement that the most current available data be used, data for general purpose polystyrene (GPPS), the major raw material, was taken from Plastics Europe. This data was updated in 2010.

Cut-off criteria

According to EN 15804, where there is insufficient data, or data gaps exist for a unit process in the LCA, the flow in question can be omitted (cut-off) up to a maximum of 1% of the total mass of inputs to that process. The total of input flows omitted in this way for any single module must not exceed 5% of the total energy usage and mass inputs for that module. The data used in this study encompassed all raw materials, packaging materials and process aids, as well as associated transport to the manufacturing site. Process energy and water use, direct production waste and emissions to air and water are included within the data. One process additive for which no data are available was omitted from the LCA; this comprises <0.1% of the finished product.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
		kg CO₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.			
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	121	4.05E-06	0.368	0.0321	0.196	5.35E05	3240		
Construction	Transport	A4	0.628	1.14E-07	0.0022	0.00038	8.60E-05	1.52E-06	8.99		
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND		
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND	MND		
	Transport	C2	0.314	5.69E-08	0.0011	0.00019	4.30E-05	7.58E-07	4.50		
End of life	Waste processing	C3	MND	MND	MND	MND	MND	MND	MND		
	Disposal	C4	14.4	8.95E-08	0.00343	0.0013	0.00074	5.24-E07	8.97		

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG		
Froduct stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	111	0.00	111	2010	1350	3360		
Construction	Transport	A4	0.0588	INA	0.0588	9.72	INA	9.72		
process stage	Construction	A5	MND	MND	MND	MND	MND	MND		
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND		
End of life	Transport	C2	0.0294	INA	0.0294	4.86	INA	4.86		
End of life	Waste processing	C3	MND	MND	MND	MND	MND	MND		
	Disposal	C4	0.23	INA	0.23	9.45	INA	9.45		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m³			
Product stage	Raw material supply	A1	AGG	AGG	AGG	AGG			
	Transport	A2	AGG	AGG	AGG	AGG			
	Manufacturing	A3	AGG	AGG	AGG	AGG			
	Total (of product stage)	A1-3	0.0547	0.022	2.31	0.672			
Construction	Transport	A4	0.001	INA	INA	0.00112			
process stage	Construction	A5	MND	MND	MND	MND			
	Deconstruction, demolition	C1	MND	MND	MND	MND			
End of life	Transport	C2	0.0005	INA	INA	0.00056			
Ena oi ille	Waste processing	C3	MND	MND	MND	MND			
	Disposal	C4	0.00607	INA	INA	0.00949			

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories								
			HWD	NHWD	RWD			
			kg	kg	kg			
	Raw material supply	A1	AGG	AGG	AGG			
Draduat ataga	Transport	A2	AGG	AGG	AGG			
Product stage	Manufacturing	A3	AGG	AGG	AGG			
	Total (of product stage)	A1-3	0.0905	2.01	0.0004			
Construction	Transport	A4	0.0009	0.0073	3.07E-07			
process stage	Construction	A5	MND	MND	MND			
	Deconstruction, demolition	C1	MND	MND	MND			
End of the	Transport	C2	0.00045	0.00365	1.53E-07			
End of life	Waste processing	СЗ	MND	MND	MND			
	Disposal	C4	0.0657	34.00	8.67E-07			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

LCA Results (continued)

Other environmental information describing output flows – at end of life									
			CRU	MFR	MER	EE			
			kg	kg	kg	MJ per energy carrier			
	Raw material supply	A1	AGG	AGG	AGG	AGG			
Draduet etea-	Transport	A2	AGG	AGG	AGG	AGG			
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG			
	Total (of product stage)	A1-3	INA	INA	INA	INA			
Construction	Transport	A4	INA	INA	INA	INA			
process stage	Construction	A5	MND	MND	MND	MND			
	Deconstruction, demolition	C1	MND	MND	MND	MND			
Final of life	Transport	C2	INA	INA	INA	INA			
End of life	Waste processing	СЗ	MND	MND	MND	MND			
	Disposal	C4	INA	INA	INA	INA			

CRU = Components for reuse; MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and additional technical information								
Scenario	Parameter	Units	Value					
	Transport of product to building site by lorry							
A4 – Transport to the building site	Fuel type / Vehicle type	Litre of fuel type per distance or vehicle type	0.2					
	Distance	km	100					
	Capacity utilisation (incl. empty returns)	%	21					
	Bulk density of transported products	kg/m³	34					
	Transport of product at end of life to waste processing; and disposal							
	Transport to waste processing by lorry – fuel consumption	Litre of fuel type per distance or vehicle type	0.2					
	Transport to waste processing by lorry – distance	km	50					
C2 & C4 – End of life	Transport to waste processing by lorry – capacity utilisation	%	21					
	Transport to waste processing by lorry – density of product	kg/m³	34					
	Waste for energy recovery – 10% of product waste to incineration with energy recovery	kg	3.4					
	Waste for final disposal – 90% of waste product to landfill	kg	30.6					

Summary, comments and additional information

Interpretation

The polystyrene production system accounts for approximately 60% of the total indicator values for the impact categories GWP and ADPF. For EP and AP its contribution is between 40 & 45%. For all of these categories, UK electricity generation from coal and gas accounts for much of the rest of the indicator total. The ODP indicator is dominated by flows upstream in the energy production chain, with a contribution of c.12% from polystyrene production; there is no contribution to this indicator from Polyfoam XPS Ltd process. POCP is the only impact category for which Polyfoam XPS Ltd processes directly account for most of the indicator value: blowing agent constituents are released in the course of recycling process waste internally and these emissions contribute strongly to this indicator. The polystyrene production system again makes the largest contribution to the ADPE indicator, although both other raw materials and raw material transport are significant. There is high uncertainty associated with some of these contributions from generic data; the mineral content of the product itself is <1%. Figure 1 shows the contributions of the different life-cycle stages, or modules, covered by this EPD to the overall LCA results for the product. Clearly, the product stage (modules A1 -A3) makes the dominant contribution in all categories. There is a noticeable contribution to total GWP from disposal as a result of the assumption that 10% of XPS is incinerated, releasing its fossil carbon content as carbon dioxide to air.

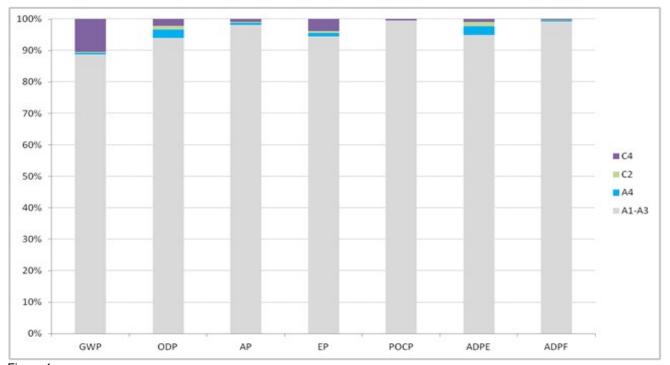


Figure 1

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

 ${\sf BSI.\ Environmental\ management-Life\ cycle\ assessment-Principles\ and\ framework.}$

BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.