

Life Cycle Assessment: Results

The following supplementary LCA results are to be read alongside the complete ROCKWOOL® Environmental Product Declaration, attached.

ROCKWOOL® stone wool product:

Ablative Coated batt

The results are for: 1 m2 of product,

with a thickness of

60 mm.

Thermal resistance as stated in product data sheet.

Limitations

Conservative choices are made in the LCA as described in the ROCKWOOL® Group LCA rules. Therefore, the results can be considered to be conservative and worst case.

Description of the system boundaries (x=included, MNA = Module not assessed)

The first of the state of the s																
Pro	duct st	age	instal	ruction llation age		Use stage						Er	End-of-life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	
Х	Х	Х	Х	Х	Х								х			

and loads beyond the system boundarie								
Rense-	Recovery-	Recycling-	potential					
D								
	х							

Environmental impact

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D	
Global warming	kg CO ₂ eqv	9.0E+00	1.8E+00	1.9E+00	0	3.1E-02	1.3E-01	-4.5E-01	
The global warming punit of that	•		al contribution to ference gas, carbo		•	•			
	f ozone is caused	by the breakdo	3.0E-16 In shields the earth wh of certain chlo then they reach the molecules.	rine and/or bro	mine co	ntaining comp	ounds	-2.5E-14	
Acidification Acid depositions have sources for emission		bstances are ag	•	il fuel combusti				-1.5E-03	
Eutrophication Excessive enrichme	kg PO ₄ ³⁻ eqv ent of waters and	8.7E-03 continental sur	2.9E-04 faces with nutrien	3.6E-04	0 ociated a	6.3E-06 dverse biolog	9.4E-05 ical effects.	-2.1E-04	
Photochemical ozone creation Chemical reactions b	kg Ethene eqv rought about by t	2.0E-03 the light energy	-6.1E-06 of the sun. The re	9.6E-05	9.9E-10 gen oxide	-2.0E-06	6.3E-05 arbons in the	-1.7E-04	
	presence of sunl	ight to form ozo	one is an example	of a photocher	nical rea	ction.			
Depletion abiotic resources -elements	kg Sb eqv	1.4E-05	1.5E-07	3.8E-08	0	2.6E-09	5.0E-08	-1.0E-07	
Depletion abiotic resources fuels	MJ	1.1E+02	2.5E+01	3.3E+00	0	4.2E-01	1.8E+00	-1.1E+01	
Consumption of non-renewable resources, thereby lowering their availability for future generations.									

Resource use

1163001CE 03E								
Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	3.4E+01	1.4E+01	1.7E+01	0	2.4E-02	2.5E-01	-6.3E+00
Use of renewable primary energy resources used as raw materials	MJ	2.1E+01	0.0E+00	-1.6E+01	0	0.0E+00	0.0E+00	0.0E+00
Total use of renewable primary energy resources	MJ	5.5E+01	1.4E+00	1.2E+00	0	2.4E-02	2.5E-01	-6.3E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	9.7E+01	2.5E+01	3.6E+00	0	4.3E-01	1.9E+00	-1.2E+01
Use of non-renewable primary energy resources used as raw materials	MJ	1.6E+01	0.0E+00	-6.2E-02	0	0.0E+00	0.0E+00	0.0E+00
Total use of non-renewable primary energy resources	MJ	1.1E+02	2.5E+01	3.5E+00	0	4.3E-01	1.9E+00	-1.2E+01
Use of secondary materials	kg	0.0E+00	n/a	0.0E+00	n/a	n/a	n/a	n/a
Use of renewable secondary fuels	MJ	*	<u></u> *	*	*	*	*	*
Use of non-renewable secondary fuels	MJ	*	*	*	*	*	*	*
Net use of fresh water	m ³	3.7E-02	1.6E-03	4.5E-03	0	2.7E-05	4.7E-04	-4.1E-03

^{*} There are no renewable and no non-renewable secondary fuels used in A3. The minor use of secondary fuels as part of the background datasets is not accounted for.

Waste categories

waste categories								
Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Hazardous waste disposed	kg	6.5E-06	1.2E-06	7.6E-08	0	2.7E-08	4.1E-08	-2.1E-08
Non-hazardous waste disposed	kg	5.7E-01	3.8E-03	2.7E-01	0	6.6E-05	9.5E+00	-3.0E-02
Radioactive waste disposed*	kg	1.3E-03	3.1E-05	7.8E-05	0	5.3E-07	2.2E-05	-1.7E-05

^{*} There is never radioactive waste from a ROCKWOOL plant (A3), but there might be small amounts associated with the secondary LCI datasets used for the upstream chain (A1 & A2), which are taken into account here.


Output flows

Parameter	Unit	A1-3	A4	A5	B1	C2	C4	D
Component for re-use	kg	2.57E-06	n/a	7.65E-08	n/a	n/a	n/a	n/a
Materials for recycling	kg	4.52E-01	n/a	n/a	n/a	n/a	n/a	n/a
Materials for energy recovery	kg	5.19E-04	n/a	n/a	n/a	n/a	n/a	n/a


Exported energy MJ n/a n/a n/a n/a n/a n/a

ROCKWOOL FIRESAFE INSULATION

CREATE AND PROTECT®

